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Towards a Model of Energy Complexity for
Algorithms

Ravi Jain, David Molnar, Zulfikar Ramzan

Abstract— Energy is a fundamental resource limitation in
mobile and wireless devices. A great deal of research in mobile
and wireless networking over the past decade has examined ways
of reducing energy usage, including specific techniques such as
energy-aware protocols for routing and communication. However,
to our knowledge, no systematic way has been developed for
reasoning generally about the energy consumption of algorithms.
Techniques to understand and reason about the time and space
complexity of algorithms, in particular asymptotic analysis and
the big-Oh notation, have helped place computer programming as
well as system design on a firm theoretical and practical footing.
Clearly a method for analyzing energy complexity at the same
abstract algorithmic level would be invaluable. However, it is not
clear that a uniform abstract model of energy complexity can be
developed that is both theoretically tractable and has practical
predictive ability. Minimizing energy consumption requires mak-
ing tradeoffs between many resources, including computation,
communication, and memory accesses; taking any single resource
as a proxy for energy cost neglects these tradeoffs and may lead
to a poor model.

In this paper we survey techniques for modeling and minimiz-
ing energy consumption at various system levels, so as to place
algorithmic energy complexity in perspective. We then discuss the
attributes that a model of energy complexity should have, and
describe our initial approach towards developing such a model.
We end by discussing future technical directions.

I. I NTRODUCTION

Energy consumption is a fundamental problem for today’s
mobile wireless systems. Clearly, energy is a precious resource
in any system with entities that depend upon a limited battery
source for operation. For example, the energy consumption of
a network protocol is due to all entities that are involved in the
protocol, including not only the communicating end devices,
but intermediate switches, routers, and proxies. In most cases,
fixed and wired entities such as routers have a reliable,
effectively unlimited, power supply. A mobile device may also
enjoy effectively unlimited power, for example when it is used
in a car and derives power from the car battery. However, from
a purely functional point of view it is typically the mobile
wireless devices in the system that face the most critical energy
limitation (although minimizing energy consumption at entities
with unlimited power may be important for other reasons e.g.
environmental concerns [14]). We thus focus on minimizing
energy consumption in energy-limited mobile wireless devices.
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Energy consumption in mobile wireless devices is likely to
be an issue of growing importance in the future. For several
decades, the CPU speeds, storage densities, and the bandwidth
capabilities of mobile devices have been increasing rapidly.
For example, research prototypes of cellular radio interface
subsystems have been shown to be capable of providing data
rates of up to 100 Mbps [31]. On the other hand, battery
technology has provided capacity increases of only a few
percent per year. Thisenergy bottleneckindicates that energy
will continue to be a fundamental limitation for many years
to come in mobile wireless devices, and in fact, is likely to
become the most important limitation.

To reduce the energy bottleneck effectively, it must be
addressed at all levels of a mobile wireless device. There has
been a great deal of research over the past decade to find
ways of doing so. We will discuss this research briefly in the
next section, but here we point out that it ranges from work
at the gate and logic level, to compilers, operating systems,
protocols and all the way up to applications. For example,
there is a growing body of research on power-aware mobile
networking protocols; see Jones et al. [15] for a survey.

In some sense, the research done on reducing energy con-
sumption of a device is analogous to the the research done
for reducing computation time in a device, which also ranges
from the gate level to compilers, networking protocols and
applications. Over the past several decades many techniques
have been developed for modeling and analyzing computation
time at various system levels and at varying degrees of
granularity. These techniques include experimental methodolo-
gies, benchmarks, testbeds, and various performance modeling
and analysis theories, such as queuing networks, Petri nets,
stochastic analysis, as well as related tools.

Most importantly, at the bottom, machine computation time
can fundamentally be understood and analyzed in terms of
theoretical models of computation, such as the Turing machine
and the RAM model of computation [19]. In particular, the
scalability of algorithms can be understood in terms of an
appropriately chosen model, such as the RAM model, which
has been experimentally validated, and it is possible to reason
about the computational time complexity of an algorithm in
an asymptotic sense. Similarly the space complexity of an
algorithm can also be analyzed.

In fact, asymptotic analysis of algorithms can be applied
at all levels of a computer, as operations of various degrees
of sophistication exist at all levels and their number can be
estimated in an asymptotic sense. Thus algorithm analysis
techniques and the big-Oh notation are a fundamental part of
the toolkit of researchers, system designers, and practitioners
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alike. Like all tools, they have limitations and must be used
with care, but there is no doubt that they rest on a sound,
validated theoretical complexity model and that they have con-
tributed greatly to development and systematic understanding
in many areas of computing.

Our central observation is that no such fundamental model
seems to exist for reasoning about the energy complexity
of algorithms. Such a model could be invaluable in guiding
the development of energy-reducing techniques for mobile
wireless devices, and this paper aims to take a first step
towards such a model.

A device consumes energy in various operations, including
computation, communication and memory usage. Thus energy
consumption involves tradeoffs that need to be considered
carefully. For example, communicating a single bit on a
mobile wireless device can be as much as 1000 times more
expensive than executing a single instruction. Therefore, one
might neglect computation cost and focus on minimizing com-
munication in order to minimize energy. Recently, however,
Barr-Asanovíc analyzed the issue of compressing data before
sending it. They found that the amount of computation may
outweigh the savings in communication [3]. Through extensive
experimentation, they showed that both communication and
computation must be considered to reduce total energy cost.
Thus developing a model of energy complexity must take
several functions into account, and the tradeoffs among them;
using CPU time or communication cost as a sole indicator or
proxy for energy cost can be highly misleading.

When trying to understand and model energy complexity
it should be noted that the effectiveness of an algorithm or
energy reduction technique depends upon the energy context
in which it is applied. This is especially important for mobile
computing, as wireless devices range from relatively power-
rich laptops to severely resource-constrained sensor nodes. For
example, the multicast time maximization protocol of Floréen
et al. [7] requires each node to solve a linear program at each
step, in order to reduce energy consumption by minimizing
computation. For a laptop or even a cell phone, this may be
reasonable. For a sensor node, it may not be, as the cost of
solving a linear program may be too high compared to the cost
of communication. While sensor nodes have come to be recog-
nized as special cases due to their extreme limitations, there
are more and less powerful sensor nodes, and other classes
of devices also have gradations. Thus the energy usage of an
algorithm, like its computation time, must be evaluated, and
its effectiveness judged, in the intended application context.

A complication in the development of an energy complexity
model is that unlike CPU time and storage resources, the
energy available from a fixed unit source such as a battery
seems to have some ”elasticity” that depends upon the usage
pattern; for example typical dry-cell alkaline batteries last
longer if they are used in short bursts rather than drained
continuously [5]. In our initial approach we do not deal with
this issue directly, and instead assume for simplicity that it
suffices to estimate the energy consumed by various device
functions such as computation, communication and the like.
However, as we discuss below, we indirectly consider this
issue in terms of the timing at which various functions are

carried out.
Our approach is to develop an energy complexity model

with parameters that precisely express the functions invoked
by the algorithm, such as computation, communication and
memory usage, as well as the tradeoffs between them. We
take as our starting point the most basic of all models of
computation, namely the Turing machine. Our Augmented
Turing Machine (ATM) model explicitly includes a notion of
“switching cost” – the energy cost to switch between different
units of the processor. While switching cost has recently
been recognized by the compiler community as an important
component of energy cost, algorithms do not currently take it
into account. The ATM model allows us to treat switching cost
more formally, thereby easing the task of producing widely
applicable energy-efficient algorithms.

Practice and theory have different but related demands
for an energy model. A practitioner needs an energy model
that has predictive power: given a piece of code and some
information about the input, the model should return an answer
for energy consumption close to the consumption of real
hardware. A theorist, on the other hand, requires a model
that allows for ease and generality of analysis, and provides
an answer that is not dependent upon the specific hardware.
The Turing machine is clearly a model suitable for theorists
rather than practitioners. However, it provides a convenient,
sound and well-accepted starting point that can be a basis for
more practical models. For instance, just as the Turing machine
model has been replaced by other models, such as the RAM
model, that are more convenient for carrying out algorithm
analysis, we believe our approach can also be developed in a
similar manner. However, it is not yet fully clear that a uniform
abstract model of energy complexity can be developed that is
both theoretically tractable and has practical predictive ability.

This paper makes several contributions. We argue that an
abstract model for algorithmic energy complexity is desirable
and possible for mobile wireless devices. We give an initial
approach to developing such a model starting at the theoretical
end via the Augmented Turing Machine. We then show that
our model provides a “well-behaved” complexity measure in
the sense of Blum [27], and derive basic theorems relating
to the languages that the ATM accepts. We also show that
time-space tradeoff results for algorithms like the Fast Fourier
Transform, in the basic Turing Machine model, imply energy-
space tradeoffs in the ATM model.

The rest of this paper is organized as follows. Section II-A
briefly surveys the large range of technical work on reduc-
ing energy consumption at various levels of mobile wireless
devices, including logic, processors, operating systems and
compilers. We also survey, in Section II-B, two previous
approaches to developing models that can provide inspiration
for our work, namely I/O complexity models and a time-
energy cost model. In Section III we define the ATM and
derive some of its basic theoretical properties. A rich field of
future work awaits, which we sketch in Section IV.

II. RELATED WORK

We now discuss low-level work on improving energy con-
sumption as background for our model. Work on improving
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the energy consumption on embedded devices has been done
at four levels: the logic design level, the processor level, the
operating system level and the compiler level. We discuss each
of these lines of research in turn. A portion of the exposition
presented below is a summary of the survey in chapter 2 of
Havinga’s thesis [10]. In addition, a considerable amount of
work has been done in reducing energy at various levels of
the networking protocol stack. We will not discuss this work
here due to space limitations, but refer the reader to surveys
and recent papers and references therein [15], [4], [3], [30].

Thus, and as will be clear from the discussion below, work
on reducing energy consumption of mobile wireless devices
has been proceeding systematically at several levels. However,
a notable exception is in the fundamental area of algorithms.
We believe that a model for reasoning about the energy
complexity of algorithms will fill an important gap.

Finally this section discusses an algorithmic complexity
model based on I/O rather than space or time as well as a
combined time-energy model. Such alternate models can guide
us in putting forth our own model.

A. Reducing Energy Consumption

1) Improving Energy Complexity at the Logic Level:One of
the lowest levels at which one can improve energy consump-
tion is in the underlying logic design. For example, we can
use cell libraries which comprise transistors of varying sizes.
For this reason, cell libraries have lower capacitances than
gate arrays and therefore consume less power when switching.
Moreover, one can try to optimize the cells themselves to use
less power; for example, by preventing long rise and fall times.

Reversible logicis another very low-level mechanism for
saving energy. The central premise of using such logic in the
design of systems is to effectively recycle the energy used,
thereby emitting very little heat. Whereas traditional logic
overwrites information resulting from a logical operation (e.g.,
the “AND” operator loses information about which of the input
bits were set to 0 if the AND evaluates to 0) reversible logic
is designed to not throw any such information away. This
can actually impact energy consumption since whenever a bit
of data is overwritten, energy is discharged at the location
where that bit was stored because of the change in voltage
(e.g., from positive to negative). More formally,ln 2 × kT
joules of energy are dissipated whenever a system erases a
single bit of information; herek is Boltzmann’s constant and
T is the temperature. At room temperature (approximately 300
Kelvin), the dissipation is about2.9×10−21 joules. For further
information on reversible computing, see the manuscript based
on Frank’s MIT Ph.D. thesis [8].

Frequent “switching” during execution also leads to high
energy complexity – and such switching can often be analyzed
at the algorithmic level (though, to the best of our knowledge,
switching as a complexity-theoretic measure has not been
studied previously). The following measures identify switching
as a key component of energy consumption:

• Clock Gating. Power consumption in CMOS is propor-
tional to the clock frequency. One can therefore reduce
power by dynamically turning off any clocks to logic that

is temporarily unused. A clock gating scheme employs a
control signal which, when true, toggles the clock, and
when false holds the clock steady. Clock gating can be
employed locally (e.g., clocks to specific registers) or
more globally (e.g., to turn off clocks to larger modules
in the processor). In either case, trying to exercise logic
thoroughly before switching to other logic can lead to
lower energy consumption.

• Changes to State Machines.Similar to clock gating,
one can turn off portions of a state machine that are
inactive, which may be especially effective since only one
“sub-machine” can be active at any given time. Another
energy-optimization to state machines is to create an
encoding of the state space that strives to minimize the
expected number of bits toggled during a state change;
i.e., to minimize the Hamming distance between the
encoding of the state that was transitioned from and
the state transitioned to. Of course, such an optimization
requires understanding the behavior of state transitions at
a statistical level. We remark that one may use clock-
gating to lower state machine power consumption by
disabling an actual transition when a self-loop is detected,
as was studied in the work of Koegst et al. [16]

• General Logic Encoding. In general, any state change
in a signal (e.g., a clock, a data pin, or an address line)
consumes energy. One possible way to reduce energy
consumption, therefore, is to choose an encoding that
results in fewer transitions. Consider, for example, a way
to encode a program counter. The standard mechanism
(using a base-2 ripple-carry adder to increment) results
in n bit flips, if the least significantn bits are 1 and the
(n + 1)st bit is 0. On average, this yields a change of
two bits per increment. One might try alternate encoding
schemes (such as one based on a Gray code) which might
result in a single bit change. Of course, an incrementer
in such a case might require more logic to implement.
An alternate scheme for encoding information on a bus
with N lines is thebus-invert code[23] which works as
follows. If two consecutive values to be transmitted on
the bus have Hamming distance greater thanN/2, one
can instead transmit the bitwise not of the second value.
An extra bus line is needed to specify whether the bits
were flipped, but at least we guarantee that the Hamming
distance between successive values is at mostN/2.

Having discussed low-level mechanisms at the logic level,
we move to a higher level of abstraction and discuss how
processor design and layout can effect power consumption.

2) Improving Energy Complexity at the Processor Level:
Several techniques improve processor-level energy complexity.
We consider two mechanisms: organization of memory and
layout of communication channels.

ORGANIZATION OF MEMORY. There are three major types of
memory: main memory, cache, and secondary storage – each
consumes a significant amount of energy. We discuss how one
might try to minimize the impact of each type in turn:

• Main Memory. Main memory, which might be in the
form of DRAM or SDRAM, is typically in one of three
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states: active, standby, or off. As one might expect, energy
consumption is greatest in the active state – potentially
several hundred times larger than when in the standby
state [11]. Therefore, trying to cluster memory requests
so that they can all be handled at once would leave main
memory in the standby state longer, thereby reducing
energy consumption. Along the same lines, breaking a
large chunk of memory up into smaller “sub-memories”
can reduce energy consumption since only one of the sub-
memories need be active at any given time. This approach
is followed in the Direct Rambus DRAM system [20].
One can further design memory chips to be more energy
efficient – not surprisingly, this can be achieved by
making the chips faster, thereby increasing the amount
of time spent in standby mode [22].

• Cache.The concept of caching is one of the most well-
known ideas in computer science. One can reduce energy
consumption by exploiting spatial and temporal locality
of memory accesses so that data that is more likely to
be accessed is placed in smaller, faster and more energy-
efficient storage. Moreover, with a good cache-hit ratio,
the traffic in other parts of the processor (e.g., the bus) is
decreased, which further lowers energy consumption. We
remark, however, that to create energy-efficient caches
may itself be a challenge. For example, if a complicated
architecture is used to obtain a better hit ratio, then this
may have a negative impact on the energy complexity.

• Secondary Storage.On a typical processor today, sec-
ondary storage involves a magnetic disk. While the motor
of the disk is running, energy is being consumed. Al-
though one can turn this motor off, if it needs to be turned
on again, the process may itself consume considerable
time and energy. As an alternate method for secondary
storage, especially for more weight sensitive mobile de-
vices, we may use flash memory. Like a hard disk, flash
is non-volatile and can store data without consuming
energy. Flash also consumes far less memory than a
traditional magnetic disk. Estimates range at a 60% to
90% reduction in secondary storage power consumption
compared to a traditional magnetic disk [6].

In addition to various memory and storage considerations,
energy consumption may be improved in the intra-processor
communications channels such as buses.

INTRA-PROCESSORCOMMUNICATION . It has been shown
that between 10 to 40% of power is dissipated in commu-
nications channels such as buses [1]. One can use similar
principles from caching. In particular, if buses are designed
to exploit locality – for example, by breaking up a system
into smaller subsystems where the majority of communication
is done within a given subsystem as opposed to between two
subsystems – then most data can be passed on shorter and
more energy efficient “local” buses.

3) Improving Energy Complexity at the Operating System
Level: One common way to reduce energy consumption at
the operating system level is via scheduling. Traditionally,
scheduling is based on factors such as priority and latency.
However, careful scheduling can also lead to energy reduction.

For example, if the system enters an idle state in which there
is no important computation being performed, the operating
system can power off significant portions of the system. In
general, there is much research on this and similar approaches
for improving energy consumption at the operating system
level. See [32], [33], [34] and the references therein.

4) Improving Energy Complexity at the Compiler Level:
Several techniques reduce compiler-level energy complexity.
These include instruction choice and instruction ordering. The
latter is geared towards the obvious maneuver of trying to
determine which instructions tend to consume more energy,
and trying to avoid such instructions when compiling. With
respect to instruction ordering, the goal is to minimize the
number of switches between functional units.

Of course, traditional compiler optimizations for code size
and speed will also yield energy reductions. For example, if
specific instruction operands are placed in the same memory
bank, an optimizing compiler might retrieve them with a single
double-operand move operation. This eliminates a memory
access and reduces.

B. Models for I/O and Energy

1) Algorithmic Complexity Models for I/O:In addition
to the traditional complexity-theoretic measures of time and
space, researchers have worked on adding I/O to the list. See
the survey by Shriver and Nodine [21]. This line of work was
motivated by algorithms operating on a data set too large to
fit into main memory. Such algorithms are required to make
(parallel) I/O calls to retrieve data from a secondary storage
device (e.g., disk or tape), operate on this data, and then write
it back to the secondary storage device. Because calls to off-
chip I/O devices require far more time than on-chip operations,
limiting the number of such calls leads to performance im-
provements in practice. Furthermore, not taking I/O calls into
account may also lead to algorithms with worseasymptotic
behavior. For example, Alpern et al. [2] showed that cache and
page misses can result in aO(k5) running time for the (naive)
O(k3) implementation of multiplication fork × k matrices.

To decrease the number of parallel I/O calls, one typically
has to design algorithms that can effectively break up the
original problem into subproblems involving a working data
set that can fit into the available on-chip memory. Moreover,
since typical I/O devices have restrictions on how data can be
read in parallel, data corresponding to a sub-problem should
be placed on disk to decrease the number of calls needed to
get this data into main memory.

2) Time-Energy Cost Models:Martin [18] also sought to
develop a complexity theory of energy. He argues that an
overall energy-time cost measurement for an algorithm should
beE× t2 (whereE is the energy used andt is the time used)
as opposed toE × t (which others have used). The reasoning
is as follows. Time is directly related to voltage in that if one
reduced the voltage in a processor by a certain factor, than
the amount of time needed for execution would essentially go
up by that same factor. Energy, on the other hand, is directly
proportional to the square of the voltage. So, suppose you had
two algorithmsA1 andA2 where the time required byA1 is
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twice that required byA2, but the energy consumed byA1 is
half that consumed byA2. According to the measureE × t,
these algorithms have equivalent cost. But, if you halve the
voltage on the machine runningA2, then bothA1 and A2

would run in the same amount of time. However, the energy
consumed byA2 would go down by a factor of 4 (because of
the quadratic relationship between energy and voltage).

Martin left open the question of how one could treat energy
as a complexity-theoretic resource at the algorithmic level.
This is our focus.

III. A UGMENTED TURING MACHINE ENERGY MODEL

The Turing Machine model was introduced by Alan Turing
in 1936 [26]. The goal was to capture the kinds of mathe-
matical functions that are computable. Since then, the Turing
Machine has also found its place in computational complexity
theory – a field which is interested not only in what is
computable, but also in howhard it is to compute.

At a high level, a Turing Machine has a finite control, an
input / output tape divided into individual cells (each of which
can contain a symbol), and a tape head that can overwrite the
contents of a cell and move at most one cell over according
to instructions received from the finite control. A single move
of a Turing Machine depends on the current symbol the tape
head is scanning and the finite control’s current state. In a
single move this symbol is overwritten (possibly by the same
symbol – leaving the tape contents identical), and the tape head
is moved either to left or right. Figure 1 provides a high-level
illustration of a Turing machine.
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Fig. 1. A high-level depiction of a single-tape Turing Machine

We consider a theoretical energy consumption model based
on an AugmentedTuring Machine (ATM). We the Turing
Machine’s finite control to also include the amount of energy
consumed during a transition between states. The total energy
consumed on an input is then the sum of the energy consumed
by each transition. More formally, an energy-augmented Tur-
ing MachineM ′ is a 9-tuple:

(Q, Σ,Γ, δ, ξ, q0, B, F, A),

where all components exceptξ are the same as for a basic
Turing Machine, and are defined as follows:
• Q is a finite set of states.
• Γ is a finite alphabet of allowable tape symbols.
• B ∈ Γ denotes the blank symbol.
• Σ ⊆ Γ−B is the alphabet of input symbols. In a typical

situation, the inputs consists of binary strings, in which
caseΣ would equal{0, 1}.

• δ : Q × Γ → Q × Γ × {L,R} is the transition function.
Its inputs are the current machine state and the current
symbol being read. It specifies the next state, the symbol
which overwrites the contents of the tape cell being
scanned, and the direction that the tape head moves.

• q0 ∈ Q is the machine’s start state; i.e., the state the finite
control is in prior to reading any input symbols.

• F ⊆ Q is the set of final states – once the machine is in
such a state, the computation is terminated.

• A ⊆ F is the set of accept states. We say that a Turing
Machine accepts its input if the finite control enters one
of the states inA.

• ξ : (Q × Γ) × (Q × Γ) → N is a computable function
specifying the number of energy units consumed
as a function of the machine’s current state and the
symbol under the tape head, and the next state and tape
symbol. HereN is the set of positive integers.

If, on input x, the machineM ′ requirest time steps and the
state-symbol pairs are:

〈(q0, s0), (q1, s1), . . . , (qt, st)〉,
then we denote the total number of energy units consumed by

Etot(M ′, x) ,
t∑

i=1

ξ((qi−1, si−1), (qi, si)).

If, for any input of lengthn, the machineM ′ consumes at
mostE(n) energy, we say thatM ′ is anE(n)-energy bounded
augmented Turing Machine. We can also define an analogous
complexity class, for any fixed measurement functionξ:

DENER(E(n), ξ) = {L | L = L(M ′)
for an E(n) energy-bounded Turing MachineM ′},

where L(M ′) is the language accepted by machineM ′.
Further we defineDENER(E(n)) ,

⋃
ξ DENER(E(n), ξ).

DISCUSSION. Before proceeding, two remarks are in place
aboutξ. First, observe that its range is the positive integersN
(as opposed to the real numbersR). In this case, the number
of possible choices ofξ is countably infinite, which facilitates
theorems whose proofs might require enumerating all possible
machines (e.g., for a diagonalization argument). Second, we do
not allowξ to take on the value 0 for any input. Permitting the
value to be 0 is not intuitively appealing since we expect some
energy to be consumed during a single operation. Interestingly,
allowing 0 values also results in theoretically unpleasant
consequences. In particular, consider an energy mappingξ
for a Turing MachineM that is 0 everywhere except for
transitions into a final or halting state (where it takes on the
value 1). Then, determining whetherM has non-zero energy
consumption is tantamount to determining ifM halts, which
is an undecidable problem.

The ATM model also captures several traditional sources
of energy consumption. For example, ifξ is identically 1 on
all inputs, then the energy complexity amounts to the time
complexity. Similarly, ifξ is higher for certain output symbols
(such as any non-blank symbol) then, the energy complexity
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captures the I/O complexity (which can capture communica-
tion complexity as well as the number of “memory” accesses).
Finally, if we can imagine partitioning the states in the finite
control into various “functional units,” then we can haveξ
be higher for transitions between states in different units
as opposed to transitions between states in the same unit.
This captures the energy consumption of switching between
functional units that Steinke et al. examined [24].

ENERGY COMPLEXITY THEOREMS. Our energy complexity
metric satisfies the requirements of a Blum complexity mea-
sure [27], which immediately implies a theoretical “speed-up”
theorem. This means that our measure is theoretically well
behaved. We can also derive an energy hierarchy theorem
similar to those obtainable for time and space. We describe
these results below.

A function A(M,x, n) is a basic complexity measurefor
energy if it takes as input a description of an ATMM , and
checks whetherM consumesn units of energy when run on
input x; i.e., A(M, x, n) = 1 if and only if M on input x
consumesn units of energy. Blum’s seminal paper [27] set
out two axioms for such complexity measures. Axiom 1 states
that if M halts, then there exists ann such thatA(M, x, n) =
1. Axiom 2 states thatA is total recursive; i.e., there is a
deterministic Turing Machine implementing the functionA
that halts on all inputs. The next two theorems respectively
show that the ATM model provides us with a Blum complexity
measure and that, as a result, there is a “speed-up” theorem.

Theorem 1:There is a Blum complexity measure for energy
consumption in an Augmented Turing Machine.

Proof: We implementA as a Turing Machine that
simulatesM on input x, and keeps track ofEtot (it is easy
to keep track ofEtot since it only involves simple sums).
Axiom 1 is satisfied because ifM halts, then we can setn to
be Etot. Axiom 2 is satisfied becauseEtot is monotonically
increasing in the time steps taken byM (each step uses at
least one energy unit). Therefore, withinn + 1 stepsM has
either halted or used more thann energy units. SinceA need
not continue simulatingM past this point, it can halt.

Theorem 2:Let r(n) be an unbounded computable func-
tion. There exists a languageL such that for all machines
M that decideL using energyt(n), there exists anM ′ that
decidesL using energyr(t(n)).

For details on the speed-up theorem, see Blum [27]. Note
that if r(n) ≤ n, then the energy consumed byM ′ is less than
that consumed byM . We can further prove the following theo-
rems, using standard proof techniques. For further information,
see Papadimitriou [19]. The first theorem is a “gap” theorem
which shows that for any energy bound, there is a language
which cannot be decided within it.

Theorem 3:For any energy boundE(n) there is a recursive
languageL not decidable inDENER(E(n)).

For the next theorem, we need the notion of an energy-
constructible function. We call a functionE(n) energy con-
structible if there is an augmented Turing MachineM ′ and
an n-bit input x for which M ′ actually consumes exactly
E(n) energy. The next theorem says that with an increase in
energy by a logarithmic multiplicative factor, we can decide

new languages. From a practice-oriented perspective, this
“hierarchy” theorem tells us that adding a little extra battery
power allows us to solve new problems.

Theorem 4:Let E(n) be an energy-constructible function
and suppose that we restrict ourselves to mappingsξ that
take on a maximum valueµ. Then, there is a languageL
in DENER(µE(n) log E(n)), but not inDENER(E(n)).

Proof: (Sketch) Observe thatDENER(E(n)) ⊆
DTIME(µE(n)). This follows since at mostµ units
of energy can be consumed at each time step. Now,
by the standard time hierarchy theorem (see Hartmanis-
Stearns [9] or Hopcroft-Ullman [13], there is a language
L in DTIME(µE(n) log E(n)) − DTIME(µE(n)). Finally,
DTIME(µE(n) log E(n)) ⊆ DENER(µE(n) log E(n)) since
at least one unit of energy is used at each time step. Therefore,
L ∈ DENER(µE(n) log E(n)), but not inDTIME(µE(n)).

Note also that ifµ = 1, energy complexity is exactly time
complexity. In this case, the theorem yields a gap between
DENER(E(n)) andDENER(E(n) log E(n), which is known
for time complexity.

ENERGY-SPACE TRADEOFFS FORFFT. We now discuss how
the ATM model can capture space-energy tradeoffs, using the
Fast Fourier Transform as an example. Aside from energy,
RAM space is also an important resource for mobile devices.
While the ATM model can capture I/O (including memory
access) in the energy cost, the total amount of space used is
a separate resource. Many wireless devices are embedded or
low-power, and so space is at a premium. At the same time,
we would like to perform multimedia computation involving
the FFT and other algorithms. It turns out we can state some
precise tradeoffs in the ATM model between energy and space,
leveraging previously known results. Again, these theorems are
well known, but have not been previously applied directly to
energy cost. For example, Savage-Swamy [29] showed:

Theorem 5:Every circuit computing FFT that uses at most
S space requiresΩ(n2/S) time.

Proof: See Tompa [28].
Tompa extended this bound to similar time-space tradeoffs

for a wide class of functions, including convolution and
polynomial multiplication. In the ATM model, this gives an
energy-space tradeoff, as energy cost is at least time cost.
Therefore we see that every ATM machine for FFT that uses
at mostS space must useΩ(n2/S) energy.

BENEFITS AND DRAWBACKS. The ATM model is based
firmly on a theoretical foundation. We found that the notions
introduced seem to be well behaved from a complexity theo-
retic perspective. Moreover, we can leverage existing results
in computational complexity theory. On the other hand, a
theoretical model such as this one gives us little predictive
power and is not easy to use for a practitioner.

The ideal model should allow us to leverage the existing
body of theoretical work, but still have practical predictive
properties. By “practical prediction” we mean that the model
should be simple, with few parameters which can be eas-
ily estimated from hardware measurements. We could then
state results about algorithms in this model, and then use
the estimated parameters to translate these into a reasonable
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prediction of the algorithm’s energy use. We believe this is a
promising direction.

IV. CONCLUSIONS ANDFUTURE WORK

We believe the large body of work on energy optimization
which has existed at the logic/processor level, the operating
system level, and the compiler level should be considered at
the algorithmic level.

Our ultimate goal is to have one energy model for both
practical and theoretical uses. As a first step, we developed the
augmented Turing Machine model, which extends well-known
definitions. The augmented Turing Machine model appears
to be theoretically well behaved. In particular, the resulting
energy complexity measure satisfies the Blum axioms, and
yields gap, speedup, and hierarchy theorems. Furthermore,
the augmented Turing Machine model captures notions that
are traditionally used to estimate energy consumption such as
time, communication, and I/O.

Theoretical models allow us to leverage existing results
from computational complexity theory. On the other hand, a
theoretical framework, such as the one we suggested, does
not have very much practical predictive power. That is, it
does not give us an accurate indication of how much energy
an algorithm could consume on an actual microprocessor.
The ideal model should be a marriage between theory and
practice. It should provide enough predictive power that an
algorithm designer or implementer can accurately estimate
energy consumption. At the same time, the model should be
simple (i.e., have few parameters), and theoretically sound
(i.e., it should allow one to prove new theorems or leverage
existing ones).

We are currently developing an energy complexity model
that we believe will be theoretically tractable but still provide
predictive power. We are also conducting experiments to
validate the model for a mobile wireless device environment.

V. ACKNOWLEDGEMENT

We thank Lawrence Brakmo for a number of very helpful
discussions on energy consumption.

REFERENCES

[1] A. Abnous and J. Rabaey. “Ultra-low-power domain specific multimedia
processors,”Proceedings of VLSI Signal Processing IX,pp 459–468,
November 1996.

[2] B. Alpern, L. Carter, E. Feig, and T. Selker. “The Uniform Memory Hi-
erarchy Model of Computation.”Algorithmica, 12(2/3):72–109. August
and September 1994.

[3] K. Barr and K. Asanovic, “Energy Aware Lossless Data Compression”,
First International Conference on Mobile Systems, Applications, and
Services (MobiSys-2003) , San Francisco, CA, May 2003

[4] C. F. Chiasserini, P. Nuggehalli, V. Srinivasan and R. R. Rao, “Energy-
Efficient Communication Protocols,” (Invited Paper),Proc. Design Au-
tomation Conf. (DAC), June 2002.

[5] C. F. Chiasserini and R. R. Rao, “Pulsed Power Discharge in Commu-
nication Devices,”Proc. Mobicom, 1999.

[6] F. Douglis, F. Kaashoek, B. Marsh, R. Caceres, K. Li, and J. Tauber.
“Storage Alternatives for Mobile Computers,”Proceedings of the 1st
Symposium on Operating Systems Design and Implementation,pages
25–37, November 1994.
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