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Abstract

Dynamic Test Generation for Large Binary Programs

by

David Alexander Molnar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David A. Wagner, Chair

This thesis develops new methods for addressing the problem of software security

bugs, shows that these methods scale to large commodity software, and lays the foundation

for a service that makes automatic, effective security testing available at a modest cost per

bug found. We make the following contributions:

• We introduce a new search algorithm for systematic test generation that is optimized

for large applications with large input files and exhibiting long execution traces where

the search is bound to be incomplete (Chapter 2);

• We introduce optimizations for checking multiple properties of a program simultane-

ously using dynamic test generation, and we formalize the notion of active property

checking (Chapter 3);

• We describe the implementation of tools that implement dynamic test generation

of large binary programs for Windows and for Linux: SAGE and SmartFuzz. We
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explain the engineering choices behind their symbolic execution algorithm and the key

optimization techniques enabling both tools to scale to program traces with hundreds

of millions of instructions (Chapters 2 and 4);

• We develop methods for coordinating large scale experiments with fuzz testing tech-

niques, including methods to address the defect triage problem (Chapter 4);
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Professor David A. Wagner
Dissertation Committee Chair
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Chapter 1

Introduction

This thesis develops new methods for addressing the problem of software security

bugs, shows that these methods scale to large commodity software, and it lays the foundation

for a service that helps developers protect their users from the dangers of insecure software.

Security bugs are examples of vulnerabilities in computer software. A vulnerability is a

bug that could potentially be used by an adversary to violate the security policy of a

victim’s computer system. An exploit, in contrast, refers to the actual code that uses the

vulnerability to violate the security policy. For example, the vulnerability might be a buffer

overflow bug in a piece of code that displays image files. An exploit would be a carefully

crafted image file that uses the buffer overflow bug to run arbitrary code on the computer

processing the image.

Vulnerabilities exist in all types of software, both “traditional” desktop and server

software and in software used to develop Web applications. While vulnerabilities in Web

software have grown to become the third most commonly reported vulnerability by vendors
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in 2005 and 2006 [23], the work of this thesis will focus on vulnerabilities in file-reading,

client-side software. This category of software includes such software as image processors,

decompression libraries, office document readers, and music players.

We focus on such software because the Internet users often view images, play

music, or download files from arbitrary sites. For example, vulnerabilities in a web browser

plugin, such as Flash, may allow an adversary to take control of a machine should the

user surf to the wrong web site. Nevis Labs notes that recent years have seen fewer public

disclosures of “remote” vulnerabilities, i.e. those that could be used without needing user

interaction. Because such vulnerabilities appear to be harder to find, Nevis suggests that

work will shift to finding bugs in client-side code [58].

Furthermore, despite the availability of memory-safe languages, buffer overflows

continue to be prominent. MITRE reports that buffer overflows were the number one

issue reported by operating system vendors in 2006 [23]. Symantec’s 2008 threat report

states that memory corruption vulnerabilities accounted for the majority of vulnerabilities

in browser plug-ins, with 271 vulnerabilities [24]. MITRE also notes that integer overflows

jumped from barely in the top 10 issues overall to number 2 for OS vendor advisories in

2006-2007. Later in this thesis, we will develop techniques that are particularly suited for

finding integer overflow bugs.

Regardless of the type of software, managing software security bugs requires mul-

tiple different approaches. We can organize these approaches using a bug cycle as a tool to

help understand the relationship of different techniques. In this cycle, we start when when a

programmer writes a bug into a piece of software. The next stage comes when someone finds
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the bug, either through deliberate testing or by accident. After that, we report the bug to

the developers, who must then fix the bug by modifying the software. Future modifications

can then introduce new bugs, thereby starting the cycle anew.

Each stage of the bug cycle offers us an opportunity to reduce the severity of

software security bugs. For example, there has been intense research into building programs

that are correct by construction. This work comes into play at the write bug part of the

cycle. If we can use these methods, we should, because they allow us to eliminate security

bugs before they have an opportunity to affect software users.

Unfortunately, creating software that is correct by construction is not always prac-

tical. For example, we may need to work with legacy software or with software libraries not

under our control. Therefore, the work of this thesis focuses on the find and on the report

stages of the bug cycle. By reducing the cost for software developers to find security bugs,

we make it easier to catch bugs before deployment. In particular, we develop a new method

for finding bugs in file-reading client side software that automatically discovers bugs missed

by human code review, static analysis, and previous dynamic testing methods.

1.1 Whitebox Fuzz Testing

The starting point for our new method of finding bugs is fuzz testing. Since the

“Month of Browser Bugs” released a new bug each day of July 2006 [71], fuzz testing has

leapt to prominence as a quick and cost-effective method for finding serious security defects

in large applications. Fuzz testing is a form of blackbox random testing which randomly

mutates well-formed inputs and tests the program on the resulting data [35, 79, 1, 8].
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In some cases, grammars are used to generate the well-formed inputs, which also allows

encoding application-specific knowledge and test heuristics.

Although fuzz testing can be remarkably effective, the limitations of blackbox test-

ing approaches are well-known. For instance, the then branch of the conditional statement

“if (x==10) then” has only one in 232 chances of being exercised if x is a randomly cho-

sen 32-bit input value. This intuitively explains why random testing usually provides low

code coverage [77]. In the security context, these limitations mean that potentially serious

security bugs, such as buffer overflows, may be missed because the code that contains the

bug is not even exercised.

We propose a conceptually simple but different approach of whitebox fuzz testing.

This work is inspired by recent advances in systematic dynamic test generation [40, 17].

Starting with a fixed input, our algorithm symbolically executes the program, gathering

input constraints from conditional statements encountered along the way. The collected

constraints are then systematically negated and solved with a constraint solver, yielding

new inputs that exercise different execution paths in the program.

For example, symbolic execution of the above fragment on the input x = 0 gen-

erates the constraint x 6= 10. Once this constraint is negated and solved, it yields x = 10,

which gives us a new input that causes the program to follow the then branch of the given

conditional statement. This allows us to exercise and test additional code for security bugs,

even without specific knowledge of the input format. Furthermore, this approach automat-

ically discovers and tests “corner cases” where programmers may fail to properly allocate

memory or manipulate buffers, leading to security vulnerabilities.
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In theory, systematic dynamic test generation can lead to full program path cov-

erage, giving us program verification [40]. In practice, however, the search is incomplete.

The incompleteness stems from the fact that the number of execution paths in the program

under test is huge, too large to exhaustively search in a reasonable amount of time with

the techniques of this thesis. Furthermore, symbolic execution, constraint generation, and

constraint solving are necessarily imprecise.

Therefore, we are forced to explore practical tradeoffs. We propose a novel search

algorithm, the generational search, with a coverage-maximizing heuristic designed to find

defects as fast as possible. The generational search responds to an engineering reality we

have discovered with large applications, which is that generating symbolic traces is expensive,

but solving constraints is cheap. Therefore, we want to leverage the expensive work of tracing

an application to obtain a path condition over many new test cases. Each test case is a

“bite at the apple” that could find a new high value software security bug. In Chapter 2

we describe the generational search, and we show that it is highly effective at finding bugs

in commodity software.

1.2 Active Property Checking

The basic dynamic test generation approach creates new test cases which cover

different paths through the program. Traditional runtime checking tools like Purify [50],

Valgrind [74] and AppVerifier [22], however, check a single program execution against a

large set of properties, such as the absence of buffer overflows, use of uninitialized variables

or memory leaks. We want a way to generate test cases which violate these properties and
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exhibit a bug, if any such test cases exist.

Our insight is that these traditional passive runtime property checkers can be

extended to actively search for property violations. Consider the simple program:

int divide(int n,int d) { // n and d are inputs

return (n/d); // division-by-zero error if d==0

}

The program divide takes two integers n and d as inputs and computes their

division. If the denominator d is zero, an error occurs. To catch this error, a traditional

runtime checker for division-by-zero would simply check whether the concrete value of d

satisfies (d==0) just before the division is performed in that specific execution, but would

not provide any insight or guarantee concerning other executions. Testing this program

with random values for n and d is unlikely to detect the error, as d has only one chance

out of 232 to be zero if d is a 32-bit integer. Static and dynamic test generation techniques

that attempt to cover specific or all feasible paths in a program will also likely miss the

error since this program has a single program path which is covered no matter what inputs

are used. However, the latter techniques could be helpful provided that a test if (d==0)

error() was inserted before the division (n/d): they could then attempt to generate an

input value for d that satisfies the constraint (d==0), now present in the program path, and

detect the error. This is essentially what active property checking does: it injects at runtime

additional symbolic constraints that, when solvable by a constraint solver, will generate new

test inputs leading to property violations.

We introduce active property checking, which extends runtime checking by checking

whether the property is satisfied by all program executions that follow the same program

path. This check is performed on a dynamic symbolic execution of the given program path
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using a constraint solver. If the check fails, the constraint solver generates an alternative

program input triggering a new program execution that follows the same program path but

exhibits a property violation. We call this “active” checking because a constraint solver is

used to “actively” look for inputs that cause a runtime check to fail. Chapter 3 describes

our formalism for active property checking, as well as reports on the effectiveness of several

active checkers.

A particular class of interest for active property checking involves integer bugs.

Integer bugs result from a mismatch between machine arithmetic and mathematical arith-

metic. For example, machine arithmetic has bounded precision; if an expression has a value

greater than the maximum integer that can be represented, the value wraps around to fit

in machine precision. This can cause the value stored to be smaller than expected by the

programmer. If, for example, a wrapped value is used as an argument to malloc, the result

is an object that is smaller than expected, which can lead to a buffer overflow later if the

programmer is not careful. This kind of bug is often known as an integer overflow bug.

Integer overflow bugs recently became the second most common bug type in secu-

rity advisories from OS vendors [23]. These kinds of bugs are pervasive and can, in many

cases, cause serious security vulnerabilities. Therefore, eliminating such bugs is important

for improving software security. Unfortunately, traditional static and dynamic analysis

techniques are poorly suited to detecting integer-related bugs. Static analysis yields false

positives due to the difficulty of reasoning precisely about integer values for variables, and

dynamic analysis may kill program executions that exhibit harmless integer overflows. Dy-

namic test generation is better suited to finding such bugs, in contrast, because we can use
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active property checking for integer bugs as a way to guide the search but notify a human

being only when a test case that crashes the program is found.

We develop new methods for finding a broad class of integer bugs with dynamic

test generation. Of special note are signed/unsigned conversion errors, which are bugs that

require reasoning about the entire trace of the program execution. This reasoning goes

beyond the scope of our formalism for active property checking in Chapter 3 and requires

new ideas. Therefore, we devise methods for performing such reasoning in a memory efficient

way that allows us to scale the inference to traces of millions of instructions. In Chapter 4

we describe these methods and report on their effectiveness.

1.3 Putting It All Together

We have implemented whitebox fuzz testing with active property checking in two

different systems, both of which scale to applications with millions of instructions in an

execution trace. The first is SAGE, short for Scalable, Automated, Guided Execution, which

a whole-program whitebox file fuzzing tool for x86 Windows applications. The second is

SmartFuzz, which is a whole-program file fuzzing tool for Linux applications using the Val-

grind framework. Both systems focus on file reading programs such as media players or

image conversion tools, but the techniques in this thesis could also apply to networked or

distributed applications. In addition to the practical benefits of having the technique avail-

able on multiple platforms, the performance of whitebox fuzz testing on different platforms

with different implementations gives us information about the technique’s effectiveness in

itself, as opposed to the effectiveness of a particular implementation.
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Our results show that dynamic test generation is remarkably effective in finding

new defects in large applications that were previously well-tested. In particular, Whitebox

fuzzing is capable of finding bugs that are beyond the reach of blackbox fuzzers. For

instance, without any format-specific knowledge, SAGE detects the critical MS07-017 ANI

vulnerability, which was missed by extensive blackbox fuzzing and static analysis.

Furthermore both whitebox and blackbox fuzz testing find so many test cases

exhibiting bugs that we must address the bug triage problem. That is, given a test case,

is the bug it exhibits new, and if it is new, how serious is it? The bug triage problem is

common in static program analysis and blackbox fuzzing, but has not been faced until now

in the context of dynamic test generation [40, 17, 81, 70, 57, 46].

To help us prioritize and manage these bug reports and streamline the process

of reporting them to developers, we built Metafuzz, a web service for tracking test cases

and bugs. Metafuzz helps minimize the amount of human time required to find high-

quality bugs and report them to developers, which is important because human time is

the most expensive resource in a testing framework. We also develop new methods for bug

bucketing, the process of grouping test cases by the bugs they exhibit. We used Metafuzz to

coordinate large scale experiments with SmartFuzz and with the zzuf blackbox fuzz testing

tool, running on the Amazon Elastic Compute Cloud.

Our goal is a service to run dynamic test generation continuously on a wide range

of software, automatically finding high-value bugs and reporting them with a minimum of

human effort. Our work shows this goal is within reach.
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1.4 SMT Solvers and Security

Our work makes use of solvers for satisfiability modulo theories, also known as

SMT solvers. These solvers take sentences that consist of statements in some underlying

theory combined with first-order logic connectives. The output of the solver is a model that

makes the sentence true. Many recent SMT solvers make use of an underlying solver for

Boolean satisfiability, taking advantage of the rapid recent progress in such solvers.

While these kinds of decision procedures have a long and distinguished history,

their application to software security is much more recent. For example, Ganapathy et al.

created a model for the sprintf function, then used the UCLID solver [13] to find format

string vulnerabilities in the function, in which a specially crafted format string causes a

memory corruption error. Chirstodorescu et al. also used a decision procedure to identify

“semantic no-op” code patterns and defeat code obfuscation [21]. Xie and Aiken use a SAT

solver directly to perform static analysis of the entire Linux kernel looking for violations

of lock discipline and memory safety errors, which can lead to security vulnerabilities [88].

Such SAT solvers have also found their way into traditional interactive verification tasks [29].

More recently, Heelan has begun applying SMT solvers to the question of generating exploits

for known vulnerabilities [51].

Most closely related to our work, DART, EXE, and KLEE also use SMT solvers

for creating test cases using dynamic analysis of the code under test [40, 17, 18]. In fact,

EXE and KLEE use the same solver, STP, as we do in our SmartFuzz tool. Both DART

and the version of the SAGE tool described in this thesis, on the other hand, use a linear

equation solver that does not understand the full theory of bitvector arithmetic; non-linear
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equations are “concretized” using the values for variables observed on a program run.

All of this work depends on the existence of solvers that can quickly handle large

instances arising from program analysis. The SMT-COMP competition has been a key

factor in spurring advances in such solvers [5]. One of the early fast solvers was Yices, which

won the 2006 SMT-COMP competition [32]. More recently, solvers such as STP, z3, and

Beaver have been developed specifically for use in software analysis applications [36] [28] [54].

Malik and Zhang survey recent advances in SAT solvers, while Barrett et al. survey the

current state of SMT solvers [66, 4].

1.5 Contributions and Statement on Joint Work

This thesis makes the following contributions:

• We introduce a new search algorithm for systematic test generation that is optimized

for large applications with large input files and exhibiting long execution traces where

the search is bound to be incomplete (Chapter 2);

• We introduce optimizations for checking multiple properties of a program simultane-

ously using dynamic test generation, and we formalize the notion of active property

checking (Chapter 3);

• We describe the implementation of SAGE and SmartFuzz: the engineering choices

behind their symbolic execution algorithm and the key optimization techniques en-

abling both tools to scale to program traces with hundreds of millions of instructions

(Chapters 2 and 4);
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• We develop methods for coordinating large scale experiments with fuzz testing tech-

niques, including methods to address the defect triage problem (Chapter 4);

• We report on extensive experiments with these tools, including examples of discovered

defects, the effectiveness of active property checking techniques, the performance of

the constraint solvers used, and the cost per bug when running fuzz testing with the

Amazon Elastic Compute Cloud framework (Chapters 2, 3, and 4).

Chapter 2 is joint work with Patrice Godefroid and Michael Y. Levin, and it

appeared at the 2008 Network Distributed Security Systems Conference [43]. Chapter 3 is

joint work with Patrice Godefroid and Michael Y. Levin, and it appeared at the 2008 ACM

EMSOFT conference [41]. Chapter 4 is joint work with Xue Cong Li and David Wagner,

and it appeared at the Usenix Security 2009 conference [69].

The development of the SAGE system was led by Michael Y. Levin. In addition to

David Molnar, contributors include Patrice Godefroid, Dennis Jeffries, and Adam Kiezun.

The SAGE system builds on the iDNA/Time Travel Debugging and Nirvana infrastructure

produced by the Microsoft Center for Software Excellence [7].

The development of the SmartFuzz system was led by David Molnar. In addition

to David Molnar, contributors include Xue Cong Li, Sushant Shankar, Shiuan-Tzuo Shen,

David Wagner, and Mark Winterrowd. The SmartFuzz system builds on the Valgrind

infrastructure produced by Nicholas Nethercote and Julian Seward [74].
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Chapter 2

Automated Whitebox Fuzz Testing

2.1 A Whitebox Fuzzing Algorithm

Consider the program shown in Figure 2.1. This program takes 4 bytes as input

and contains an error when the value of the variable cnt is greater than or equal to 3 at the

end of the function top. Running the program with random values for the 4 input bytes is

unlikely to discover the error: there are 5 values leading to the error out of 2(8∗4) possible

values for 4 bytes, i.e., a probability of about 1/230 to hit the error with random testing,

including blackbox fuzzing. This problem is typical of random testing: it is difficult to

generate input values that will drive the program through all its possible execution paths.

In contrast, whitebox dynamic test generation can easily find the error in this

program: it consists in executing the program starting with some initial inputs, performing

a dynamic symbolic execution to collect constraints on inputs gathered from predicates in

branch statements along the execution, and then using a constraint solver to infer variants of

the previous inputs in order to steer the next executions of the program towards alternative
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void top(char input[4]) {

int cnt=0;

if (input[0] == ’b’) cnt++;

if (input[1] == ’a’) cnt++;

if (input[2] == ’d’) cnt++;

if (input[3] == ’!’) cnt++;

if (cnt >= 3) abort(); // error

}

Figure 2.1: Example of program.

program branches. This process is repeated until a given specific program statement or

path is executed [57, 46], or until all (or many) feasible program paths of the program are

exercised [40, 17].

For the example above, assume we start running the function top with the initial

4-letters string good. Figure 2.2 shows the set of all feasible program paths for the function

top. The leftmost path represents the first run of the program on input good and corre-

sponds to the program path ρ including all 4 else-branches of all conditional if-statements

in the program. The leaf for that path is labeled with 0 to denote the value of the variable

cnt at the end of the run. Intertwined with the normal execution, a symbolic execution

collects the predicates i0 6= b, i1 6= a, i2 6= d and i3 6= ! according to how the conditionals

evaluate, and where i0, i1, i2 and i3 are symbolic variables that represent the values of the

memory locations of the input variables input[0], input[1], input[2] and input[3],
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bad!
0 1 1 1 12 2 3 3 32 2 2 2 3 4

good goo! godd god! gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd

Figure 2.2: Search space for the example of Figure 2.1 with the value of the variable cnt at
the end of each run and the corresponding input string.

respectively.

The path constraint φρ = 〈i0 6= b, i1 6= a, i2 6= d, i3 6= !〉 represents an equivalence

class of input vectors, namely all the input vectors that drive the program through the path

that was just executed. To force the program through a different equivalence class, one

can calculate a solution to a different path constraint, say, 〈i0 6= b, i1 6= a, i2 6= d, i3 = !〉

obtained by negating the last predicate of the current path constraint. A solution to this

path constraint is (i0 = g, i1 = o, i2 = o, i3 = !). Running the program top with this

new input goo! exercises a new program path depicted by the second leftmost path in

Figure 2.2. By repeating this process, the set of all 16 possible execution paths of this

program can be exercised. If this systematic search is performed in depth-first order, these

16 executions are explored from left to right on the Figure. The error is then reached for

the first time with cnt==3 during the 8th run, and full branch/block coverage is achieved

after the 9th run.
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2.1.1 Limitations

Systematic dynamic test generation [40, 17] as briefly described above has two

main limitations.

Path explosion: systematically executing all feasible program paths does not

scale to large, realistic programs. Path explosion can be alleviated by performing dynamic

test generation compositionally [38], by testing functions in isolation, encoding test results

as function summaries expressed using function input preconditions and output postcondi-

tions, and then re-using those summaries when testing higher-level functions. Although the

use of summaries in software testing seems promising, achieving full path coverage when

testing large applications with hundreds of millions of instructions is still problematic within

a limited search period, say, one night, even when using summaries.

Imperfect symbolic execution: symbolic execution of large programs is bound

to be imprecise due to complex program statements (pointer manipulations, arithmetic oper-

ations, etc.) and calls to operating-system and library functions that are hard or impossible

to reason about symbolically with good enough precision at a reasonable cost. Whenever

symbolic execution is not possible, concrete values can be used to simplify constraints and

carry on with a simplified, partial symbolic execution [40]. Randomization can also help by

suggesting concrete values whenever automated reasoning is difficult. Whenever an actual

execution path does not match the program path predicted by symbolic execution for a

given input vector, we say that a divergence has occurred. A divergence can be detected

by recording a predicted execution path as a bit vector (one bit for each conditional branch

outcome) and checking that the expected path is actually taken in the subsequent test run.
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2.1.2 Generational Search

We now present a new search algorithm that is designed to address these fun-

damental practical limitations. Specifically, our algorithm has the following prominent

features:

• it is designed to systematically yet partially explore the state spaces of large appli-

cations executed with large inputs (thousands of symbolic variables) and with very

deep paths (hundreds of millions of instructions);

• it maximizes the number of new tests generated from each symbolic execution (which

are long and expensive in our context) while avoiding any redundancy in the search;

• it uses heuristics to maximize code coverage as quickly as possible, with the goal of

finding bugs faster;

• it is resilient to divergences: whenever divergences occur, the search is able to recover

and continue.

This new search algorithm is presented in two parts in Figures 2.3 and 2.4.

The main Search procedure of Figure 2.3 is mostly standard. It places the initial in-

put inputSeed in a workList (line 3) and runs the program to check whether any bugs

are detected during the first execution (line 4). The inputs in the workList are then pro-

cessed (line 5) by selecting an element (line 6) and expanding it (line 7) to generate new

inputs with the function ExpandExecution described later in Figure 2.4. For each of those

childInputs, the program under test is run with that input. This execution is checked for

errors (line 10) and is assigned a Score (line 11), as discussed below, before being added to
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1 Search(inputSeed){

2 inputSeed.bound = 0;

3 workList = {inputSeed};

4 Run&Check(inputSeed);

5 while (workList not empty) {//new children

6 input = PickFirstItem(workList);

7 childInputs = ExpandExecution(input);

8 while (childInputs not empty) {

9 newInput = PickOneItem(childInputs);

10 Run&Check(newInput);

11 Score(newInput);

12 workList = workList + newInput;

13 }

14 }

15 }

Figure 2.3: Search algorithm.

the workList (line 12) which is sorted by those scores.

The main originality of our search algorithm is in the way children are expanded as

shown in Figure 2.4. Given an input (line 1), the function ExpandExecution symbolically

executes the program under test with that input and generates a path constraint PC (line

4) as defined earlier. PC is a conjunction of |PC| constraints, each corresponding to a

conditional statement in the program and expressed using symbolic variables representing

values of input parameters. Then, our algorithm attempts to expand every constraint in
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1 ExpandExecution(input) {

2 childInputs = {};

3 // symbolically execute (program,input)

4 PC = ComputePathConstraint(input);

5 for (j=input.bound; j < |PC|; j++) {

6 if((PC[0..(j-1)] and not(PC[j]))

has a solution I){

7 newInput = input + I;

8 newInput.bound = j;

9 childInputs = childInputs + newInput;

10 }

11 return childInputs;

12 }

Figure 2.4: Computing new children.

the path constraint (at a position j greater or equal to a parameter called input.bound

which is initially 0). This is done by checking whether the conjunction of the part of the

path constraint prior to the jth constraint PC[0..(j-1)] and of the negation of the jth

constraint not(PC[j]) is satisfiable. If so, a solution I to this new path constraint is used

to update the previous solution input while values of input parameters not involved in

the path constraint are preserved (this update is denoted by input + I on line 7). The

resulting new input value is saved for future evaluation (line 9).

In other words, starting with an initial input inputSeed and initial path constraint

PC, the new search algorithm depicted in Figures 2.3 and 2.4 will attempt to expand all
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|PC| constraints in PC, instead of just the last one with a depth-first search, or the first one

with a breadth-first search. To prevent these child sub-searches from redundantly exploring

overlapping parts of the search space, a parameter bound is used to limit the backtracking

of each sub-search above the branch where the sub-search started off its parent. Because

each execution is typically expanded with many children, we call such a search order a

generational search.

Consider again the program shown in Figure 2.1. Assuming the initial input is

the 4-letters string good, the leftmost path in the tree of Figure 2.2 represents the first

run of the program on that input. From this parent run, a generational search generates

four first-generation children which correspond to the four paths whose leafs are labeled

with 1. Indeed, those four paths each correspond to negating one constraint in the original

path constraint of the leftmost parent run. Each of those first generation execution paths

can in turn be expanded by the procedure of Figure 2.4 to generate (zero or more) second-

generation children. There are six of those and each one is depicted with a leaf label of 2

to the right of their (first-generation) parent in Figure 2.2. By repeating this process, all

feasible execution paths of the function top are eventually generated exactly once. For this

example, the value of the variable cnt denotes exactly the generation number of each run.

Since the procedure ExpandExecution of Figure 2.4 expands all constraints in

the current path constraint (below the current bound) instead of just one, it maximizes

the number of new test inputs generated from each symbolic execution. Although this

optimization is perhaps not significant when exhaustively exploring all execution paths of

small programs like the one of Figure 2.1, it is important when symbolic execution takes a
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long time, as is the case for large applications where exercising all execution paths is virtually

hopeless anyway. This point will be further discussed in Section 2.2 and illustrated with

the experiments reported in Section 2.3.

In this scenario, we want to exploit as much as possible the first symbolic execution

performed with an initial input and to systematically explore all its first-generation children.

This search strategy works best if that initial input is well formed. Indeed, it will be

more likely to exercise more of the program’s code and hence generate more constraints

to be negated, thus more children, as will be shown with experiments in Section 2.3. The

importance given to the first input is similar to what is done with traditional, blackbox fuzz

testing, hence our use of the term whitebox fuzzing for the search technique introduced in

this paper.

The expansion of the children of the first parent run is itself prioritized by using

a heuristic to attempt to maximize block coverage as quickly as possible, with the hope

of finding more bugs faster. The function Score (line 11 of Figure 2.3) computes the

incremental block coverage obtained by executing the newInput compared to all previous

runs. For instance, a newInput that triggers an execution uncovering 100 new blocks would

be assigned a score of 100. Next, (line 12), the newInput is inserted into the workList

according to its score, with the highest scores placed at the head of the list. Note that

all children compete with each other to be expanded next, regardless of their generation

number.

Our block-coverage heuristic is related to the “Best-First Search” of EXE [17].

However, the overall search strategy is different: while EXE uses a depth-first search that
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occasionally picks the next child to explore using a block-coverage heuristic, a generational

search tests all children of each expanded execution, and scores their entire runs before

picking the best one from the resulting workList.

The block-coverage heuristics computed with the function Score also helps dealing

with divergences as defined in the previous section, i.e., executions diverging from the ex-

pected path constraint to be taken next. The occurrence of a single divergence compromises

the completeness of the search, but this is not the main issue in practice since the search is

bound to be incomplete for very large search spaces anyway. A more worrisome issue is that

divergences may prevent the search from making any progress. For instance, a depth-first

search which diverges from a path p to a previously explored path p′ would cycle forever

between that path p′ and the subsequent divergent run p. In contrast, our generational

search tolerates divergences and can recover from this pathological case. Indeed, each run

spawns many children, instead of a single one as with a depth-first search, and, if a child run

p divergences to a previous one p′, that child p will have a zero score and hence be placed at

the end of the workList without hampering the expansion of other, non-divergent children.

Dealing with divergences is another important feature of our algorithm for handling large

applications for which symbolic execution is bound to be imperfect/incomplete, as will be

demonstrated in Section 2.3.

Finally, we note that a generational search parallelizes well, since children can be

checked and scored independently; only the work list and overall block coverage need to be

shared.
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2.2 The SAGE System

The generational search algorithm presented in the previous section has been im-

plemented in a new tool named SAGE, which stands for Scalable, Automated, Guided Exe-

cution. SAGE can test any file-reading program running on Windows by treating bytes read

from files as symbolic inputs. Another key novelty of SAGE is that it performs symbolic

execution of program traces at the x86 binary level. This section justifies this design choice

by arguing how it allows SAGE to handle a wide variety of large production applications.

This design decision raises challenges that are different from those faced by source-code

level symbolic execution. We describe these challenges and show how they are addressed

in our implementation. Finally, we outline key optimizations that are crucial in scaling to

large programs.

2.2.1 System Architecture

SAGE performs a generational search by repeating four different types of tasks.

The Tester task implements the function Run&Check by executing a program under test

on a test input and looking for unusual events such as access violation exceptions and

extreme memory consumption. The subsequent tasks proceed only if the Tester task did

not encounter any such errors. If Tester detects an error, it saves the test case and performs

automated triage as discussed in Section 2.3.

The Tracer task runs the target program on the same input file again, this time

recording a log of the run which will be used by the following tasks to replay the program

execution offline. This task uses the iDNA framework [7] to collect complete execution traces
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at the machine-instruction level.

The CoverageCollector task replays the recorded execution to compute which

basic blocks were executed during the run. SAGE uses this information to implement the

function Score discussed in the previous section.

Lastly, the SymbolicExecutor task implements the function ExpandExecution of

Section 2.1.2 by replaying the recorded execution once again, this time to collect input-

related constraints and generate new inputs using the constraint solver Disolver [49].

Both the CoverageCollector and SymbolicExecutor tasks are built on top of

the trace replay framework TruScan [73] which consumes trace files generated by iDNA and

virtually re-executes the recorded runs. TruScan offers several features that substantially

simplify symbolic execution. These include instruction decoding, providing an interface to

program symbol information, monitoring various input/output system calls, keeping track

of heap and stack frame allocations, and tracking the flow of data through the program

structures.

2.2.2 Trace-based x86 Constraint Generation

SAGE’s constraint generation differs from previous dynamic test generation imple-

mentations [40, 81, 17] in two main ways. First, instead of a source-based instrumentation,

SAGE adopts a machine-code-based approach for three main reasons:

Multitude of languages and build processes. Source-based instrumentation must

support the specific language, compiler, and build process for the program under test.

There is a large upfront cost for adapting the instrumentation to a new language, compiler,

or build tool. Covering many applications developed in a large company with a variety of
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incompatible build processes and compiler versions is a logistical nightmare. In contrast,

a machine-code based symbolic-execution engine, while complicated, need be implemented

only once per architecture. As we will see in Section 2.3, this choice has let us apply SAGE

to a large spectrum of production software applications.

Compiler and post-build transformations. By performing symbolic execution on the

binary code that actually ships, SAGE makes it possible to catch bugs not only in the target

program but also in the compilation and post-processing tools, such as code obfuscators and

basic block transformers, that may introduce subtle differences between the semantics of

the source and the final product.

Unavailability of source. It might be difficult to obtain source code of third-party

components, or even components from different groups of the same organization. Source-

based instrumentation may also be difficult for self-modifying or JITed code. SAGE avoids

these issues by working at the machine-code level. While source code does have information

about types and structure not immediately visible at the machine code level, we do not need

this information for SAGE’s path exploration.

Second, instead of an online instrumentation, SAGE adopts an offline trace-based

constraint generation. With online generation, constraints are generated as the program

is executed either by statically injected instrumentation code or with the help of dynamic

binary instrumentation tools such as Nirvana [7] or Valgrind [74] (Catchconv is an example

of the latter approach [70].) SAGE adopts offline trace-based constraint generation for

two reasons. First, a single program may involve a large number of binary components

some of which may be protected by the operating system or obfuscated, making it hard to
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replace them with instrumented versions. Second, inherent nondeterminism in large target

programs makes debugging online constraint generation difficult. If something goes wrong

in the constraint generation engine, we are unlikely to reproduce the environment leading

to the problem. In contrast, constraint generation in SAGE is completely deterministic

because it works from the execution trace that captures the outcome of all nondeterministic

events encountered during the recorded run.

2.2.3 Constraint Generation

SAGE maintains the concrete and symbolic state of the program represented by

a pair of stores associating every memory locations and registers to a byte-sized value and

a symbolic tag respectively. A symbolic tag is an expression representing either an input

value or a function of some input value. SAGE supports several kinds of tags: input(m)

represents the mth byte of the input; c represents a constant; t1 op t2 denotes the result

of some arithmetic or bitwise operation op on the values represented by the tags t1 and

t2; the sequence tag 〈t0 . . . tn〉 where n = 1 or n = 3 describes a word- or double-word-

sized value obtained by grouping byte-sized values represented by tags t0 . . . tm together;

subtag(t, i) where i ∈ {0 . . . 3} corresponds to the i-th byte in the word- or double-word-

sized value represented by t. Note that SAGE does not currently reason about symbolic

pointer dereferences. SAGE defines a fresh symbolic variable for each non-constant symbolic

tag. Provided there is no confusion, we do not distinguish a tag from its associated symbolic

variable in the rest of this section.

As SAGE replays the recorded program trace, it updates the concrete and symbolic

stores according to the semantics of each visited instruction.
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In addition to performing symbolic tag propagation, SAGE also generates con-

straints on input values. Constraints are relations over symbolic variables; for example,

given a variable x that corresponds to the tag input(4), the constraint x < 10 denotes the

fact that the fifth byte of the input is less than 10.

When the algorithm encounters an input-dependent conditional jump, it creates a

constraint modeling the outcome of the branch and adds it to the path constraint composed

of the constraints encountered so far.

The following simple example illustrates the process of tracking symbolic tags and

collecting constraints.

# read 10 byte file into a

# buffer beginning at address 1000

mov ebx, 1005

mov al, byte [ebx]

dec al # Decrement al

jz LabelForIfZero # Jump if al == 0

The beginning of this fragment uses a system call to read a 10 byte file into the memory

range starting from address 1000. For brevity, we omit the actual instruction sequence. As

a result of replaying these instructions, SAGE updates the symbolic store by associating

addresses 1000 . . . 1009 with symbolic tags input(0) . . . input(9) respectively. The two mov

instructions have the effect of loading the fifth input byte into register al. After replaying

these instructions, SAGE updates the symbolic store with a mapping of al to input(5).

The effect of the last two instructions is to decrement al and to make a conditional jump to

LabelForIfZero if the decremented value is 0. As a result of replaying these instructions,
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depending on the outcome of the branch, SAGE will add one of two constraints t = 0 or

t 6= 0 where t = input(5) − 1. The former constraint is added if the branch is taken; the

latter if the branch is not taken.

This leads us to one of the key difficulties in generating constraints from a stream

of x86 machine instructions—dealing with the two-stage nature of conditional expressions.

When a comparison is made, it is not known how it will be used until a conditional jump

instruction is executed later. The processor has a special register eflags that packs a

collection of status flags such as cf, sf, af, pf, of, and zf. How these flags are set

is determined by the outcome of various instructions. For example, cf—the first bit of

eflags—is the carry flag that is influenced by various arithmetic operations. In particular,

it is set to 1 by a subtraction instruction whose first argument is less than the second. zf

is the zero flag located at the seventh bit of eflags; it is set by a subtraction instruction

if its arguments are equal. Complicating matters even further, some instructions such as

sete and pushf access eflags directly.

For sound handling of eflags, SAGE defines bitvector tags of the form 〈f0 . . . fn−1〉

describing an n-bit value whose bits are set according to the constraints f0 . . . fn−1. In the

example above, when SAGE replays the dec instruction, it updates the symbolic store map-

ping for al and for eflags. The former becomes mapped to input(5) − 1; the latter—to

the bitvector tag 〈t < 0 . . . t = 0 . . . 〉 where t = input(5)− 1 and the two shown constraints

are located at offsets 0 and 6 of the bitvector—the offsets corresponding to the positions of

cf and zf in the eflags register.

Another pervasive x86 practice involves casting between byte, word, and double
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word objects. Even if the main code of the program under test does not contain explicit

casts, it will invariably invoke some run-time library function such as atol, malloc, or

memcpy that does.

SAGE implements sound handling of casts with the help of subtag and sequence

tags. This is illustrated by the following example.

mov ch, byte [...]

mov cl, byte [...]

inc cx # Increment cx

Let us assume that the two mov instructions read addresses associated with the symbolic

tags t1 and t2. After SAGE replays these instructions, it updates the symbolic store with

the mappings cl 7→ t1 and ch 7→ t2. The next instruction increments cx—the 16-bit register

containing cl and ch as the low and high bytes respectively. Right before the increment, the

contents of cx can be represented by the sequence tag 〈t1, t2〉. The result of the increment

then is the word-sized tag t = (〈t1, t2〉 + 1). To finalize the effect of the inc instruction,

SAGE updates the symbolic store with the byte-sized mappings cl 7→ subtag(t, 0) and

ch 7→ subtag(t, 1). SAGE encodes the subtag relation by the constraint x = x′ + 256 ∗ x′′

where the word-sized symbolic variable x corresponds to t and the two byte-sized symbolic

variables x′ and x′′ correspond to subtag(t, 0) and subtag(t, 1) respectively.

2.2.4 Constraint Optimization

SAGE employs a number of optimization techniques whose goal is to improve the

speed and memory usage of constraint generation: tag caching ensures that structurally

equivalent tags are mapped to the same physical object; unrelated constraint elimination
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reduces the size of constraint solver queries by removing the constraints which do not share

symbolic variables with the negated constraint; local constraint caching skips a constraint if

it has already been added to the path constraint; flip count limit establishes the maximum

number of times a constraint generated from a particular program instruction can be flipped;

concretization reduces the symbolic tags involving bitwise and multiplicative operators into

their corresponding concrete values.

These optimizations are fairly standard in dynamic test generation. The rest of

this section describes constraint subsumption, an optimization we found particularly useful

for analyzing structured-file parsing applications.

The constraint subsumption optimization keeps track of the constraints generated

from a given branch instruction. When a new constraint f is created, SAGE uses a fast

syntactic check to determine whether f definitely implies or is definitely implied by another

constraint generated from the same instruction. If this is the case, the implied constraint

is removed from the path constraint.

The subsumption optimization has a critical impact on many programs processing

structured files such as various image parsers and media players. For example, in one of

the Media 2 searches described in Section 2.3, we have observed a ten-fold decrease in the

number of constraints because of subsumption. Without this optimization, SAGE runs out

of memory and overwhelms the constraint solver with a huge number of redundant queries.

Let us look at the details of the constraint subsumption optimization with the help

of the following example:
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mov cl, byte [...]

dec cl # Decrement cl

ja 2 # Jump if cl > 0

This code fragment loads a byte into cl and decrements it in a loop until it becomes 0.

Assuming that the byte read by the mov instruction is mapped to a symbolic tag t0, the

algorithm outlined in Section 2.2.3 will generate constraints t1 > 0, . . . , tk−1 > 0, and tk ≤ 0

where k is the concrete value of the loaded byte and ti+1 = ti − 1 for i ∈ {1 . . . k}. Here,

the memory cost is linear in the number of loop iterations because each iteration produces

a new constraint and a new symbolic tag.

The subsumption technique allows us to remove the first k−2 constraints because

they are implied by the following constraints. We still have to hold on to a linear number of

symbolic tags because each one is defined in terms of the preceding tag. To achieve constant

space behavior, constraint subsumption must be performed in conjunction with constant

folding during tag creation: (t − c) − 1 = t − (c + 1). The net effect of the algorithm with

constraint subsumption and constant folding on the above fragment is the path constraint

with two constraints t0 − (k − 1) > 0 and t0 − k ≤ 0.

Another hurdle arises from multi-byte tags. Consider the following loop which is

similar to the loop above except that the byte-sized register cl is replaced by the word-sized

register cx.

mov cx, word [...]

dec cx # Decrement cx

ja 2 # Jump if cx > 0
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Assuming that the two bytes read by the mov instruction are mapped to tags t′0 and t′′0 ,

this fragment yields constraints s1 > 0, . . . , sk−1 > 0, and sk ≤ 0 where si+1 = 〈t′i, t
′′
i 〉 − 1

with t′i = subtag(si, 0) and t′′i = subtag(si, 1) for i ∈ {1 . . . k}. Constant folding becomes

hard because each loop iteration introduces syntactically unique but semantically redundant

word-size sequence tags. SAGE solves this with the help of sequence tag simplification which

rewrites 〈subtag(t, 0), subtag(t, 1)〉 into t avoiding duplicating equivalent tags and enabling

constant folding.

Constraint subsumption, constant folding, and sequence tag simplification are suf-

ficient to guarantee constant space replay of the above fragment generating constraints

〈t′0, t
′′
0〉 − (k − 1) > 0 and 〈t′0, t

′′
0〉 − k ≤ 0. More generally, these three simple techniques

enable SAGE to effectively fuzz real-world structured-file-parsing applications in which the

input-bound loop pattern is pervasive.

2.3 Experiments

We first describe our initial experiences with SAGE, including several bugs found

by SAGE that were missed by blackbox fuzzing efforts. Inspired by these experiences, we

pursue a more systematic study of SAGE’s behavior on two media-parsing applications. In

particular, we focus on the importance of the starting input file for the search, the effect

of our generational search vs. depth-first search, and the impact of our block coverage

heuristic. In some cases, we withold details concerning the exact application tested because

the bugs are still in the process of being fixed.
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2.3.1 Initial Experiences

MS07-017. On 3 April 2007, Microsoft released an out of band critical security patch for

code that parses ANI format animated cursors. The vulnerability was originally reported

to Microsoft in December 2006 by Alex Sotirov of Determina Security Research, then made

public after exploit code appeared in the wild [83]. This was only the third such out-of-band

patch released by Microsoft since January 2006, indicating the seriousness of the bug. The

Microsoft SDL Policy Weblog states that extensive blackbox fuzz testing of this code failed

to uncover the bug, and that existing static analysis tools are not capable of finding the

bug without excessive false positives [53]. SAGE, in contrast, synthesizes a new input file

exhibiting the bug within hours of starting from a well-formed ANI file.

In more detail, the vulnerability results from an incomplete patch to MS05-006,

which also concerned ANI parsing code. The root cause of this bug was a failure to validate

a size parameter read from an anih record in an ANI file. Unfortunately, the patch for

MS05-006 is incomplete. Only the length of the first anih record is checked. If a file has an

initial anih record of 36 bytes or less, the check is satisfied but then an icon loading function

is called on all anih records. The length fields of the second and subsequent records are

not checked, so any of these records can trigger memory corruption.

Therefore, a test case needs at least two anih records to trigger the MS07-017 bug.

The SDL Policy Weblog attributes the failure of blackbox fuzz testing to find MS07-017 to

the fact that all of the seed files used for blackbox testing had only one anih record, and

so none of the test cases generated would break the MS05-006 patch. While of course one

could write a grammar that generates such test cases for blackbox fuzzing, this requires
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Figure 2.5: On the left, an ASCII rendering of a prefix of the seed ANI file used for our
search. On the right, the SAGE-generated crash for MS07-017. Note how the SAGE test
case changes the LIST to an additional anih record on the next-to-last line.

effort and does not generalize beyond the single ANI format.

In contrast, SAGE can generate a crash exhibiting MS07-017 starting from a well-

formed ANI file with one anih record, despite having no knowledge of the ANI format.

Our seed file was picked arbitrarily from a library of well-formed ANI files, and we used

a small test driver that called user32.dll to parse test case ANI files. The initial test

case generated a path constraint with 341 branch constraints after parsing 1279939 total

instructions over 10072 symbolic input bytes. SAGE then created a crashing ANI file at

depth 72 after 7 hours 36 minutes of search and 7706 test cases, using one core of a 2 GHz

AMD Opteron 270 dual-core processor running 32-bit Windows Vista with 4 GB of RAM.

Figure 2.5 shows a prefix of our seed file side by side with the crashing SAGE-generated

test case. Figure 2.6 shows further statistics from this test run.

Compressed File Format. We released an alpha version of SAGE to an internal testing

team to look for bugs in code that handles a compressed file format. The parsing code for
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Test # SymExec SymExecT Init. |PC| # Tests Mean Depth Mean # Instr. Mean Size

ANI 808 19099 341 11468 178 2066087 5400

Media 1 564 5625 71 6890 73 3409376 65536

Media 2 3 3457 3202 1045 1100 271432489 27335

Media 3 17 3117 1666 2266 608 54644652 30833

Media 4 7 3108 1598 909 883 133685240 22209

Compressed File 47 1495 111 1527 65 480435 634

OfficeApp 1 3108 15745 3008 6502 923731248 45064

Figure 2.6: Statistics from 10-hour searches on seven test applications, each seeded with a
well-formed input file. We report the number of SymbolicExecutor tasks during the search,
the total time spent in all SymbolicExecutor tasks in seconds, the number of constraints
generated from the seed file, the total number of test cases generated, the mean depth per
test case in number of constraints, the mean number of instructions executed after reading
the input file, and the mean size of the symbolic input in bytes.

this file format had been extensively tested with blackbox fuzzing tools, yet SAGE found

two serious new bugs. The first bug was a stack overflow. The second bug was an infinite

loop that caused the processing application to consume nearly 100% of the CPU. Both bugs

were fixed within a week of filing, showing that the product team considered these bugs

important. Figure 2.6 shows statistics from a SAGE run on this test code, seeded with a

well-formed compressed file. SAGE also uncovered two separate crashes due to read access

violations while parsing malformed files of a different format tested by the same team; the

corresponding bugs were also fixed within a week of filing.

Media File Parsing. We applied SAGE to parsers for four widely used media file formats,

which we will refer to as “Media 1,” “Media 2,” “Media 3,” and “Media 4.” Through several

testing sessions, SAGE discovered crashes in each of these media files that resulted in nine

distinct bug reports. For example, SAGE discovered a read violation due to the program

copying zero bytes into a buffer and then reading from a non-zero offset. In addition,

starting from a seed file of 100 zero bytes, SAGE synthesized a crashing Media 1 test case
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after 1403 test cases, demonstrating the power of SAGE to infer file structure from code.

Figure 2.6 shows statistics on the size of the SAGE search for each of these parsers, when

starting from a well-formed file.

Office 2007 Application. We have used SAGE to successfully synthesize crashing test

cases for a large application shipped as part of Office 2007. Over the course of two 10-hour

searches seeded with two different well-formed files, SAGE generated 4548 test cases, of

which 43 crashed the application. The crashes we have investigated so far are NULL pointer

dereference errors, and they show how SAGE can successfully reason about programs on

a large scale. Figure 2.6 shows statistics from the SAGE search on one of the well-formed

files.

Image Parsing. We used SAGE to exercise the image parsing code in a media player

included with a variety of other applications. While our initial run did not find crashes,

we used an internal tool to scan traces from SAGE-generated test cases and found several

uninitialized value use errors. We reported these errors to the testing team, who expanded

the result into a reproducible crash. This experience shows that SAGE can uncover serious

bugs that do not immediately lead to crashes.

2.3.2 Experiment Setup

Test Plan. We focused on the Media 1 and Media 2 parsers because they are widely

used. We ran a SAGE search for the Media 1 parser with five “well-formed” media files,

chosen from a library of test media files. We also tested Media 1 with five “bogus” files

: bogus-1 consisting of 100 zero bytes, bogus-2 consisting of 800 zero bytes, bogus-3

consisting of 25600 zero bytes, bogus-4 consisting of 100 randomly generated bytes, and
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bogus-5 consisting of 800 randomly generated bytes. For each of these 10 files, we ran a

10-hour SAGE search seeded with the file to establish a baseline number of crashes found

by SAGE. If a task was in progress at the end of 10 hours, we allowed it to finish, leading to

search times slightly longer than 10 hours in some cases. For searches that found crashes,

we then re-ran the SAGE search for 10 hours, but disabled our block coverage heuristic.

We repeated the process for the Media 2 parser with five “well-formed” Media 2 files and

the bogus-1 file.

Each SAGE search used AppVerifier [22] configured to check for heap memory

errors. Whenever such an error occurs, AppVerifier forces a “crash” in the application

under test. We then collected crashing test cases, the absolute number of code blocks

covered by the seed input, and the number of code blocks added over the course of the

search. We performed our experiments on four machines, each with two dual-core AMD

Opteron 270 processors running at 2 GHz. During our experiments, however, we used only

one core to reduce the effect of nondeterministic task scheduling on the search results. Each

machine ran 32-bit Windows Vista, with 4 GB of RAM and a 250 GB hard drive.

Triage. Because a SAGE search can generate many different test cases that exhibit the

same bug, we “bucket” crashing files by the stack hash of the crash, which includes the

address of the faulting instruction. It is possible for the same bug to be reachable by

program paths with different stack hashes for the same root cause. Our experiments always

report the distinct stack hashes.

Nondeterminism in Coverage Results. As part of our experiments, we measured the

absolute number of blocks covered during a test run. We observed that running the same
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input on the same program can lead to slightly different initial coverage, even on the same

machine. We believe this is due to nondeterminism associated with loading and initializing

DLLs used by our test applications.

2.3.3 Results and Observations

The Appendix shows a table of results from our experiments. Here we comment

on some general observations. We stress that these observations are from a limited sample

size of two applications and should be taken with caution.

Symbolic execution is slow. We measured the total amount of time spent performing

symbolic execution during each search. We observe that a single symbolic execution task

is many times slower than testing or tracing a program. For example, the mean time for a

symbolic execution task in the Media 2 search seeded with wff-3 was 25 minutes 30 seconds,

while testing a Media 2 file took seconds. At the same time, we can also observe that only

a small portion of the search time was spent performing symbolic execution, because each

task generated many test cases; in the Media 2 wff-3 case, only 25% of the search time was

spent in symbolic execution. This shows how a generational search effectively leverages the

expensive symbolic execution task. This also shows the benefit of separating the Tester

task from the more expensive SymbolicExecutor task.

Generational search is better than depth-first search. We performed several runs

with depth-first search. First, we discovered that the SAGE search on Media 1 when

seeded with the bogus-1 file exhibited a pathological divergence (see Section 2) leading

to premature termination of the search after 18 minutes. Upon further inspection, this

divergence proved to be due to concretizing an AND operator in the path constraint. We
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did observe depth-first search runs for 10 hours for Media 2 searches seeded with wff-2

and wff-3. Neither depth-first searches found crashes. In contrast, while a generational

search seeded with wff-2 found no crashes, a generational search seeded with wff-3 found

15 crashing files in 4 buckets. Furthermore, the depth-first searches were inferior to the

generational searches in code coverage: the wff-2 generational search started at 51217

blocks and added 12329, while the depth-first search started with 51476 and added only

398. For wff-3, a generational search started at 41726 blocks and added 9564, while the

depth-first search started at 41703 blocks and added 244. These different initial block

coverages stem from the nondeterminism noted above, but the difference in blocks added is

much larger than the difference in starting coverage. The limitations of depth-first search

regarding code coverage are well known (e.g., [65]) and are due to the search being too

localized. In contrast, a generational search explores alternative execution branches at all

depths, simultaneously exploring all the layers of the program. Finally, we saw that a much

larger percentage of the search time is spent in symbolic execution for depth-first search

than for generational search, because each test case requires a new symbolic execution task.

For example, for the Media 2 search seeded with wff-3, a depth-first search spent 10 hours

and 27 minutes in symbolic execution for 18 test cases generated, out of a total of 10 hours

and 35 minutes. Note that any other search algorithm that generates a single new test from

each symbolic execution (like a breadth-first search) has a similar execution profile where

expensive symbolic executions are poorly leveraged, hence resulting in relatively few tests

being executed given a fixed time budget.

Divergences are common. Our basic test setup did not measure divergences, so we
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ran several instrumented test cases to measure the divergence rate. In these cases, we

often observed divergence rates of over 60%. This may be due to several reasons: in our

experimental setup, we concretize all non-linear operations (such as multiplication, division,

and bitwise arithmetic) for efficiency, there are several x86 instructions we still do not

emulate, we do not model symbolic dereferences of pointers, tracking symbolic variables

may be incomplete, and we do not control all sources of nondeterminism as mentioned

above. Despite this, SAGE was able to find many bugs in real applications, showing that

our search technique is tolerant of such divergences.

Bogus files find few bugs. We collected crash data from our well-formed and bogus

seeded SAGE searches. The bugs found by each seed file are shown, bucketed by stack

hash, in Figure 2.7. Out of the 10 files used as seeds for SAGE searches on Media 1, 6 found

at least one crashing test case during the search, and 5 of these 6 seeds were well-formed.

Furthermore, all the bugs found in the search seeded with bogus-1 were also found by at

least one well-formed file. For SAGE searches on Media 2, out of the 6 seed files tested,

4 found at least one crashing test case, and all were well-formed. Hence, the conventional

wisdom that well-formed files should be used as a starting point for fuzz testing applies to

our whitebox approach as well.

Different files find different bugs. Furthermore, we observed that no single well-formed

file found all distinct bugs for either Media 1 or Media 2. This suggests that using a wide

variety of well-formed files is important for finding distinct bugs as each search is incomplete.

Bugs found are shallow. For each seed file, we collected the maximum generation reached

by the search. We then looked at which generation the search found the last of its unique
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crash buckets. For the Media 1 searches, crash-finding searches seeded with well-formed

files found all unique bugs within 4 generations, with a maximum number of generations

between 5 and 7. Therefore, most of the bugs found by these searches are shallow — they

are reachable in a small number of generations. The crash-finding Media 2 searches reached

a maximum generation of 3, so we did not observe a trend here.

Figure 2.8 shows histograms of both crashing and non-crashing (“NoIssues”) test

cases by generation for Media 1 seeded with wff-4. We can see that most tests executed were

of generations 4 to 6, yet all unique bugs can be found in generations 1 to 4. The number

of test cases tested with no issues in later generations is high, but these new test cases do

not discover distinct new bugs. This behavior was consistently observed in almost all our

experiments, especially the “bell curve” shown in the histograms. This generational search

did not go beyond generation 7 since it still has many candidate input tests to expand

in smaller generations and since many tests in later generations have lower incremental-

coverage scores.

No clear correlation between coverage and crashes. We measured the absolute

number of blocks covered after running each test, and we compared this with the locations

of the first test case to exhibit each distinct stack hash for a crash. Figure 2.9 shows the

result for a Media 1 search seeded with wff-4; the vertical bars mark where in the search

crashes with new stack hashes were discovered. While this graph suggests that an increase in

coverage correlates with finding new bugs, we did not observe this universally. Several other

searches follow the trends shown by the graph for wff-2: they found all unique bugs early

on, even if code coverage increased later. We found this surprising, because we expected
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there to be a consistent correlation between new code explored and new bugs discovered. In

both cases, the last unique bug is found partway through the search, even though crashing

test cases continue to be generated.

Effect of block coverage heuristic. We compared the number of blocks added during

the search between test runs that used our block coverage heuristic to pick the next child

from the pool, and runs that did not. We observed only a weak trend in favor of the

heuristic. For example, the Media 2 wff-1 search added 10407 blocks starting from 48494

blocks covered, while the non-heuristic case started with 48486 blocks and added 10633,

almost a dead heat. In contrast, the Media 1 wff-1 search started with 27659 blocks and

added 701, while the non-heuristic case started with 26962 blocks and added only 50. Out

of 10 total search pairs, in 3 cases the heuristic added many more blocks, while in the others

the numbers are close enough to be almost a tie. As noted above, however, this data is

noisy due to nondeterminism observed with code coverage.

2.4 Other Related Work

Other extensions of fuzz testing have recently been developed. Most of those

consist of using grammars for representing sets of possible inputs [79, 84]. Probabilistic

weights can be assigned to production rules and used as heuristics for random test input

generation. Those weights can also be defined or modified automatically using coverage

data collected using lightweight dynamic program instrumentation [86]. These grammars

can also include rules for corner cases to test for common pitfalls in input validation code

(such as very long strings, zero values, etc.). The use of input grammars makes it possible
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to encode application-specific knowledge about the application under test, as well as testing

guidelines to favor testing specific areas of the input space compared to others. In practice,

they are often key to enable blackbox fuzzing to find interesting bugs, since the probability

of finding those using pure random testing is usually very small. But writing grammars

manually is tedious, expensive and scales poorly. In contrast, our whitebox fuzzing approach

does not require an input grammar specification to be effective. However, the experiments

of the previous section highlight the importance of the initial seed file for a given search.

Those seed files could be generated using grammars used for blackbox fuzzing to increase

their diversity. Also, note that blackbox fuzzing can generate and run new tests faster than

whitebox fuzzing due to the cost of symbolic execution and constraint solving. As a result,

it may be able to expose new paths that would not be exercised with whitebox fuzzing

because of the imprecision of symbolic execution.

As previously discussed, our approach builds upon recent work on systematic dy-

namic test generation, introduced in [40, 16] and extended in [39, 81, 17, 38, 78]. The main

differences are that we use a generational search algorithm using heuristics to find bugs as

fast as possible in an incomplete search, and that we test large applications instead of unit

test small ones, the latter being enabled by a trace-based x86-binary symbolic execution

instead of a source-based approach. Those differences may explain why we have found more

bugs than previously reported with dynamic test generation.

Our work also differs from tools such as [31], which are based on dynamic taint

analysis that do not generate or solve constraints, but instead simply force branches to be

taken or not taken without regard to the program state. While useful for a human auditor,
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this can lead to false positives in the form of spurious program crashes with data that

“can’t happen” in a real execution. Symbolic execution is also a key component of static

program analysis, which has been applied to x86 binaries [3]. Static analysis is usually more

efficient but less precise than dynamic analysis and testing, and their complementarity is well

known [33, 39]. They can also be combined [39, 44]. Static test generation [56] consists of

analyzing a program statically to attempt to compute input values to drive it along specific

program paths without ever executing the program. In contrast, dynamic test generation

extends static test generation with additional runtime information, and is therefore more

general and powerful [40, 38]. Symbolic execution has also been proposed in the context of

generating vulnerability signatures, either statically [11] or dynamically [25].

2.5 Conclusion

We introduced a new search algorithm, the generational search, for dynamic test

generation that tolerates divergences and better leverages expensive symbolic execution

tasks. Our system, SAGE, applied this search algorithm to find bugs in a variety of produc-

tion x86 machine-code programs running on Windows. We then ran experiments to better

understand the behavior of SAGE on two media parsing applications. We found that using

a wide variety of well-formed input files is important for finding distinct bugs. We also

observed that the number of generations explored is a better predictor than block coverage

of whether a test case will find a unique new bug. In particular, most unique bugs found

are found within a small number of generations.

While these observations must be treated with caution, coming from a limited



45

sample size, they suggest a new search strategy: instead of running for a set number of

hours, one could systematically search a small number of generations starting from an

initial seed file and, once these test cases are exhausted, move on to a new seed file. The

promise of this strategy is that it may cut off the “tail” of a generational search that only

finds new instances of previously seen bugs, and thus might find more distinct bugs in the

same amount of time. Future work should experiment with this search method, possibly

combining it with our block-coverage heuristic applied over different seed files to avoid re-

exploring the same code multiple times. The key point to investigate is whether generation

depth combined with code coverage is a better indicator of when to stop testing than code

coverage alone.

2.6 Additional Search Statistics

For each search, we report the number of crashes of each type: the first number

is the number of distinct buckets, while the number in parentheses is the total number of

crashing test cases. We also report the total search time (SearchTime), the total time spent

in symbolic execution (AnalysisTime), the number of symbolic execution tasks (Analysis-

Tasks), blocks covered by the initial file (BlocksAtStart), new blocks discovered during the

search (BlocksAdded), the total number of tests (NumTests), the test at which the last

crash was found (TestsToLastCrash), the test at which the last unique bucket was found

(TestsToLastUnique), the maximum generation reached (MaxGen), the generation at which

the last unique bucket was found (GenToLastUnique), and the mean number of file positions

changed for each generated test case (Mean Changes).
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In the crash rows, the first number is the number of distinct buckets, while the

number in parentheses is the total number of crashing test cases. Divergence percentages

are calculated using the total number of AnalysisTasks minus one, because the first task

cannot diverge.
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stack hash wff-1 wff-2 wff-3 wff-4 wff-5 bogus-1

1867196225 × × × × ×

2031962117 × × × × ×

612334691 × ×

1061959981 × ×

1212954973 × ×

1011628381 × × ×

842674295 ×

1246509355 × × ×

1527393075 ×

1277839407 ×

1392730167 ×

1951025690 ×

stack hash wff-1 wff-3 wff-4 wff-5

790577684 × × × ×

825233195 × × ×

795945252 × × × ×

1060863579 × × × ×

1043337003 ×

808455977 ×

1162567688 ×

Figure 2.7: SAGE found 12 distinct stack hashes (shown left) from 357 Media 1 crashing
files and 7 distinct stack hashes (shown right) from 88 Media 2 crashing files.
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Figure 2.8: Histograms of test cases and of crashes by generation for Media 1 seeded with
wff-4.

Figure 2.9: Coverage and initial discovery of stack hashes for Media 1 seeded with wff-4

and wff-2. The leftmost bar represents multiple distinct crashes found early in the search;
all other bars represent a single distinct crash first found at this position in the search.
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Media 1: wff-1 wff-1nh wff-2 wff-2nh wff-3 wff-3nh wff-4 wff-4nh

NULL 1 (46) 1 (32) 1(23) 1(12) 1(32) 1(26) 1(13) 1(1)

ReadAV 1 (40) 1 (16) 2(32) 2(13) 7(94) 4(74) 6(15) 5(45)

WriteAV 0 0 0 0 0 1(1) 1(3) 1(1)

SearchTime 10h7s 10h11s 10h4s 10h20s 10h7s 10h12s 10h34s 9h29m2s

AnalysisTime(s) 5625 4388 16565 11729 5082 6794 5545 7671

AnalysisTasks 564 545 519 982 505 752 674 878

BlocksAtStart 27659 26962 27635 26955 27626 27588 26812 26955

BlocksAdded 701 50 865 111 96 804 910 96

NumTests 6890 7252 6091 14400 6573 10669 8668 15280

TestsToLastCrash 6845 7242 5315 13616 6571 10563 6847 15279

TestsToLastUnique 168 5860 266 13516 5488 2850 2759 1132

MaxGen 6 6 6 8 6 7 7 8

GenToLastUnique 3 (50%) 5 (83%) 2 (33%) 7 (87.5%) 4 (66%) 3 (43%) 4 (57%) 3 (37.5%)

Mean Changes 1 1 1 1 1 1 1 1

Media 1: wff-5 wff-5nh bogus-1 bogus-1nh bogus-2 bogus-3 bogus-4 bogus-5

NULL 1(25) 1(15) 0 0 0 0 0 0

ReadAV 3(44) 3(56) 3(3) 1(1) 0 0 0 0

WriteAV 0 0 0 0 0 0 0 0

SearchTime 10h8s 10h4s 10h8s 10h14s 10h29s 9h47m15s 5m23s 5m39s

AnalysisTime(s) 21614 22005 11640 13156 3885 4480 214 234

AnalysisTasks 515 394 1546 1852 502 495 35 35

BlocksAtStart 27913 27680 27010 26965 27021 27022 24691 24692

BlocksAdded 109 113 130 60 61 74 57 41

NumTests 4186 2994 12190 15594 13945 13180 35 35

TestsToLastCrash 4175 2942 1403 11474 NA NA NA NA

TestsToLastUnique 1504 704 1403 11474 NA NA NA NA

MaxGen 5 4 14 13 8 9 9 9

GenToLastUnique 3 (60%) 3 (75%) 10 (71%) 11 (84%) NA NA NA NA
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Media 2: wff-1 wff-1nh wff-2 wff-3 wff-3nh wff-4 wff-4nh wff-5 wff-5nh bogus1

NULL 0 0 0 0 0 0 0 0 0 0

ReadAV 4(9) 4(9) 0 4(15) 4(14) 4(6) 3(3) 5(14) 4(12) 0

WriteAV 0 0 0 0 0 0 0 1(1) 0 0

SearchTime 10h12s 10h5s 10h6s 10h17s 10h1s 10h3s 10h7s 10h3s 10h6s 10h13s

AnalysisTime(s) 3457 3564 1517 9182 8513 1510 2195 10522 14386 14454

AnalysisTasks 3 3 1 6 7 2 2 6 6 1352

BlocksAtStart 48494 48486 51217 41726 41746 48729 48778 41917 42041 20008

BlocksAdded 10407 10633 12329 9564 8643 10379 10022 8980 8746 14743

NumTests 1045 1014 777 1253 1343 1174 948 1360 980 4165

TestsToLastCrash 1042 989 NA 1143 1231 1148 576 1202 877 NA

TestsToLastUnique 461 402 NA 625 969 658 576 619 877 NA

MaxGen 2 2 1 3 2 2 2 3 2 14

GenToLastUnique 2 (100%) 2 (100%) NA 2 (66%) 2 (100%) 2 (100%) 1 (50%) 2 2 NA

Mean Changes 3 3 4 4 3.5 5 5.5 4 4 2.9

wff-1 wff-1-nh wff-2 wff-3 wff-3-nh wff-4 wff-4-nh wff-5 wff-5-nh bogus-1

NULL 0 0 0 0 0 0 0 0 0 0

ReadAV 4(9) 4(9) 0 4(15) 4(14) 4(6) 3(3) 5(14) 4(12) 0

WriteAV 0 0 0 0 0 0 0 1(1) 0 0

SearchTime 10h12s 10h5s 10h6s 10h17s 10h1s 10h3s 10h7s 10h3s 10h7s 10h13s

AnalysisTime 3457 3564 1517 9182 8513 1510 2195 10522 14386 14454

AnalysisTasks 3 3 1 6 7 2 2 6 6 1352

Divergences 2 (100%) 2 (100%) 0 2 (40%) 6 (100%) 1 (100%) 1 (100%) 3 (60%) 5 (83 %) 1083 (83 %)

BlocksAtStart 48494 48486 51217 41726 41746 48729 48778 41917 42041 20008

BlocksAdded 10407 10633 12329 9564 8643 10379 10022 8980 8746 14743

NumTests 1045 1014 777 1253 1343 1174 948 1360 14386 4165

TestsToLastCrash 1042 909 NA 1143 1231 1148 576 1202 877 NA

TestsToLastUnique 461 402 NA 625 969 658 576 619 877 NA

MaxGen 2 2 1 3 2 2 2 3 2 14

GenToLastUnique 2 2 NA 2 2 2 1 2 2 NA

Mean Changes/Test 3 3 4 4 3.5 5 5.5 4 4 2.9

Figure 2.11: Search statistics for Media 2.
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Chapter 3

Active Property Checking

3.1 Introduction

Code inspection is one of the primary ways serious security bugs can be found and

fixed before deployment, but manual code inspection is extremely expensive. During the

last decade, code inspection for standard programming errors has largely been automated

with static code analysis. Commercial static program analysis tools (e.g., [14, 48]) are

now routinely used in many software development organizations. These tools are popular

because they find many real software bugs, thanks to three main ingredients: they are

automatic, they are scalable, and they check many properties. Intuitively, any tool that is

able to check automatically (with good enough precision) millions of lines of code against

hundreds of coding rules and properties is bound to find on average, say, one bug every

thousand lines of code.

Our research goal is to automate, as much as possible, an even more expensive

part of the software development process, namely software testing, which usually accounts
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for about 50% of the R&D budget of software development organizations. In particular,

we want to automate test generation by leveraging recent advances in program analysis,

automated constraint solving, and the increasing computation power available on modern

computers. Compared to static analysis, test generation has a key benefit: the test case

itself demonstrates the presence of a bug; there are no “false positives.” To replicate the

success of static program analysis in the testing space, we need the same key ingredients:

automation, scalability and the ability to check many properties.

Automating test generation from program analysis is an old idea [56, 72], and

work in this area can roughly be partitioned into two groups: static versus dynamic test

geneneration. Static test generation [56, 6, 85, 26] consists of analyzing a program statically

to attempt to compute input values to drive its executions along specific program paths. In

contrast, dynamic test generation [57, 40, 17, 43] consists in executing the program, typically

starting with some random inputs, while simultaneously performing a symbolic execution to

collect symbolic constraints on inputs obtained from predicates in branch statements along

the execution, and then using a constraint solver to infer variants of the previous inputs

in order to steer program executions along alternative program paths. Since dynamic test

generation extends static test generation with additional runtime information, it can be

more powerful [40]. Scalability in this context has been recently addressed in [38, 43]. The

motivation of the present work is to address the third challenge, which has been largely

unexplored so far: how to dynamically check many properties simultaneously, thoroughly

and efficiently, in order to maximize the chances of finding bugs during an automated testing

session?
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Traditional runtime checking tools like Purify [50], Valgrind [74] and AppVeri-

fier [22] check a single program execution against a set of properties (such as the absence

of buffer overflows, uninitialized variables or memory leaks). We show in this paper how

such traditional passive runtime property checkers can be extended to actively search for

property violations. Consider the simple program:

int divide(int n,int d) { // n and d are inputs

return (n/d); // division-by-zero error if d==0

}

The program divide takes two integers n and d as inputs and computes their division. If the

denominator d is zero, an error occurs. To catch this error, a traditional runtime checker

for division-by-zero would simply check whether the concrete value of d satisfies (d==0)

just before the division is performed in that specific execution, but would not provide any

insight or guarantee concerning other executions. Testing this program with random values

for n and d is unlikely to detect the error, as d has only one chance out of 232 to be zero if

d is a 32-bit integer. Static and dynamic test generation techniques that attempt to cover

specific or all feasible paths in a program will also likely miss the error since this program

has a single program path which is covered no matter what inputs are used. However, the

latter techniques could be helpful provided that a test if (d==0) error() was inserted

before the division (n/d): they could then attempt to generate an input value for d that

satisfies the constraint (d==0), now present in the program path, and detect the error. This

is essentially what active property checking does: it injects at runtime additional symbolic

constraints that, when solvable by a constraint solver, will generate new test inputs leading

to property violations.

In other words, active property checking extends runtime checking by checking
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whether the property is satisfied by all program executions that follow the same program

path. This check is performed on a dynamic symbolic execution of the given program path

using a constraint solver. If the check fails, the constraint solver generates an alternative

program input triggering a new program execution that follows the same program path

but exhibits a property violation. We call this “active” checking because a constraint

solver is used to “actively” look for inputs that cause a runtime check to fail. Combined

with systematic dynamic test generation, which attempts to exercise all feasible paths in a

program, active property checking defines a new form of program verification for terminating

programs.

Closely Related Work. Checking properties at runtime on a dynamic symbolic

execution of the program was suggested in [60], but may return false alarms whenever

symbolic execution is imprecise, which is often the case in practice. Active property checking

extends the idea of [60] by combining it with constraint solving and test generation in order

to further check using a new test input whether the property is actually violated as predicted

by the prior imperfect symbolic execution. This way, no false alarms are ever reported.

Although ideas similar to active property checking have been independently men-

tioned briefly in previous work [17, 55], prior work on dynamic test generation provides no

study of active property checking, no formalization, no connections with static and dynamic

type checking, no optimizations, and no evaluation with a representative set of checkers. [17]

reports several bugs, but does not specify which were found using active property checking

(which is only alluded to in one paragraph on page 3). While [55] discusses adding assertions

to check properties in the program, it focuses on “predicting” property violating executions,
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not on test case generation, and their experiments report only “predicted” errors, as done

in [60], which we specifically aim to extend.

Contributions. Our work provides first comprehensive study of this simple,

general, yet unexplored, idea of active property checking. Specifically, our work makes

several contributions:

• We formalize active property checking semantically in Section 3.3 and show how it

can provide a form of program verification when combined with (sound and complete)

systematic dynamic test generation (recalled in Section 3.2). The technical report

associated with this work in addition shows how active type checking connects with

traditional static and dynamic type checking [42].

• Section 3.4 discusses how to design a type system that combines static, dynamic and

active checking for a simple imperative language. This clarifies the connection, dif-

ference and complementarity between active type checking and traditional static and

dynamic type checking.

• Section 3.5 discusses how to implement active checking efficiently by minimizing the

number of calls to the constraint solver, minimizing formula sizes and using two con-

straint caching schemes.

• Section 3.6 describes our implementation of 13 active checkers for security testing of

x86 binaries of media playing Windows applications. We stress that while our imple-

mentation targets x86, the main ideas apply to any instruction set and architecture.

Results of experiments searching for bugs in these applications are discussed in Sec-

tion 3.7. Media playing is a key feature for some classes of embedded systems, and
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media may be obtained from arbitrary, possibly adversarial, sources. For example,

a flaw in the Adobe Windows Flash player was exploited during the “PWN2OWN

2008” contest to take control of a machine running Windows Vista; similar bugs may

exist in mobile versions of Flash. Active property checking was able to detect several

new bugs in these media playing applications.

Note that dynamic test generation is complementary to static analysis because

it can analyze code that current static analysis does not handle well (e.g., due to function

pointers or inline assembly). The new bugs found in codec applications studied in our paper

had been missed by static analysis. Active property checking also requires no programmer

intervention or annotations.

3.2 Systematic Dynamic Test Generation

Dynamic test generation (see [40] for further details) consists of running the pro-

gram P under test both concretely, executing the actual program, and symbolically, calcu-

lating constraints on values stored in program variables x and expressed in terms of input

parameters α. Side-by-side concrete and symbolic executions are performed using a concrete

store ∆ and a symbolic store Σ, which are mappings from program variables to concrete and

symbolic values respectively. A symbolic value is any expression sv in some theory T where

all free variables are exclusively input parameters α. For any variable x, ∆(x) denotes the

concrete value of x in ∆, while Σ(x) denotes the symbolic value of x in Σ. The judgment

∆ ⊢ e → v means an expression e reduces to a concrete value v, and similarly Σ ⊢ e → sv

means that e reduces to a symbolic value sv. For notational convenience, we assume that
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Σ(x) is always defined and is simply ∆(x) by default if no expression in terms of inputs

is associated with x. The notation ∆(x 7→ c) denotes updating the mapping ∆ so that x

maps to c.

The program P manipulates the memory (concrete and symbolic stores) through

statements, or commands, that are abstractions of the machine instructions actually exe-

cuted. A command can be an assignment of the form x := e (where x is a program variable

and e is an expression), a conditional statement of the form if e then C else C ′ where

e denotes a boolean expression, and C and C ′ are continuations denoting the unique next

statement to be evaluated (programs considered here are thus sequential and deterministic),

or stop corresponding to a program error or normal termination.

Given an input vector ~α assigning a value to every input parameter α, the evalua-

tion of a program defines a unique finite program execution s0
C1→ s1 . . .

Cn→ sn that executes

the finite sequence C1 . . . Cn of commands and goes through the finite sequence s1 . . . sn of

program states. Each program state is a tuple 〈C,∆,Σ, pc〉 where C is the next command to

be evaluated, and pc is a special meta-variable that represents the current path constraint.

For a finite sequence w of statements (i.e., a control path w), a path constraint pcw is a

formula of theory T that characterizes the input assignments for which the program executes

along w. To simplify the presentation, we assume that all the program variables have some

default initial concrete value in the initial concrete store ∆0, and that the initial symbolic

store Σ0 identifies the program variables v whose values are program inputs (for all those,

we have Σ0(v) = α where α is some input parameter). We also assume that all program

executions eventually terminate. Initially, pc is defined to true.
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Systematic dynamic test generation [40] consists of systematically exploring all

feasible program paths of the program under test by using path constraints and a con-

straint solver. By construction, a path constraint represents conditions on inputs that

need be satisfied for the current program path to be executed. Given a program state

〈C,∆,Σ, pc〉 and a constraint solver for theory T, if C is a conditional statement of the

form if e then C else C ′, any satisfying assignment to the formula pc∧ sv (respectively

pc ∧ ¬sv) defines program inputs that will lead the program to execute the then (resp.

else) branch of the conditional statement. By systematically repeating this process, such

a directed search can enumerate all possible path constraints and eventually execute all

feasible program paths.

The search is exhaustive provided that the generation of the path constraint (in-

cluding the underlying symbolic execution) and the constraint solver for the given theory T

are both sound and complete, that is, for all program paths w, the constraint solver returns

a satisfying assignment for the path constraint pcw if and only if the path is feasible (i.e.,

there exists some input assignment leading to its execution). In this case, in addition to find-

ing errors such as the reachability of bad program statements (like assert(0)), a directed

search can also prove their absence, and therefore obtain a form of program verification.

Theorem 1 (adapted from [40]) Given a program P as defined above, a directed search

using a path constraint generation and a constraint solver that are both sound and complete

exercises all feasible program paths exactly once.

In this case, if a program statement has not been executed when the search is over, this

statement is not executable in any context.
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1 int buggy(int x) { // x is an input

2 int buf[20];

3 buf[30]=0; // buffer overflow independent of x

4 if (x > 20)

5 return 0;

6 else

7 return buf[x]; // buffer overflow if x==20

8 }

Figure 3.1: Example of program with buffer overflows.

In practice, path constraint generation and constraint solving are usually not sound

and complete. When a program expression cannot be expressed in the given theory T decided

by the constraint solver, it can be simplified using concrete values of sub-expressions, or

replaced by the concrete value of the entire expression. For example, if the solver handles

only linear arithmetic, symbolic sub-expressions involving multiplications can be replaced

by their concrete values.

3.3 Active Checkers

Even when sound and complete, a directed search based on path exploration alone

can miss errors that are not path invariants, i.e., that are not violated by all concrete

executions executing the same program path, or errors that are not caught by the program’s

run-time environment. This is illustrated by the simple program shown in Figure 3.1.

This program takes as (untrusted) input an integer value stored in variable x. A

buffer overflow in line 3 will be detected at run-time only if a runtime checker monitors

buffer accesses. Such a runtime checker would thus check whether any array access of the

form a[x] satisfies the condition 0 ≤ ∆(x) < b where ∆(x) is the concrete value of array



60

index x and b denotes the bound of the array a (b is 20 for the array buf in the example

of Figure 3.1). Let us call such a traditional runtime checker for concrete values a passive

checker.

Moreover, a buffer overflow is also possible in line 7 provided x==20, yet a directed

search focused on path exploration alone may miss this error. The reason is that the only

condition that will appear in a path constraint for this program is x > 20 and its negation.

Since most input values for x that satisfy ¬(x > 20) do not cause the buffer overflow, the

error will likely be undetected with a directed search as defined in the previous section.

In order to catch the buffer overflow on line 7, the program should be extended

with a symbolic test 0 ≤ Σ(x) < b (where Σ(x) denotes the symbolic value of array index

x) just before the buffer access buf[x] on line 7. This will force the condition 0 ≤ x < 20

to appear in the path constraint of the program in order to refine the partitioning of its

input values. An active checker for array bounds can be viewed as systematically adding

such symbolic tests before all array accesses.

Formally, we define passive checkers and active checkers as follows.

Definition 1 A passive checker for a property π is a function that takes as input a finite

program execution w, and returns fail π iff the property π is violated by w.

Because we assume all program executions terminate, properties considered here are safety

properties. Runtime property checkers like Purify [50], Valgrind [74] and AppVerifier [22]

are examples of tools implementing passive checkers.

Definition 2 Let pcw denote the path constraint of a finite program execution w. An active

checker for a property π is a function that takes as input a finite program execution w, and
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returns a formula φC such that the formula pcw ∧ ¬φC is satisfiable iff there exists a finite

program execution w′ violating property π and such that pcw′ = pcw.

Active checkers can be implemented in various ways, for instance using property

monitors/automata, program rewrite rules or type checking. They can use private memory

to record past events (leading to the current program state), but they are not allowed any

side effect on the program. Section 3.6 discusses detailed examples of how active checkers

can be implemented. Here are examples of specifications of active checkers.

Example 1 Division By Zero. Given a program state where the next statement involves

a division by a denominator d which depends on an input (i.e., such that Σ(d) 6= ∆(d)), an

active checker for division by zero outputs the constraint φDiv = (Σ(d) 6= 0).

Example 2 Array Bounds. Given a program state where the next statement involves an

array access a[x] where x depends on an input (i.e., is such that Σ(x) 6= ∆(x)), an active

checker for array bounds outputs the constraint φBuf = (0 ≤ Σ(x) < b) where b denotes the

bound of the array a.

Example 3 NULL Pointer Dereference. Consider a program expressed in a language

where pointer dereferences are allowed. Given a program state where the next statement

involves a pointer dereference *p where p depends on an input (i.e., such that Σ(p) 6= ∆(p)),

an active checker for NULL pointer dereference generates the constraint φNULL = (Σ(p) 6=

NULL).

Multiple active checkers can be used simultaneously by simply considering sepa-

rately the constraints they inject in a given path constraint. Such a way, they are guaranteed
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not to interfere with each other (since they have no side effects). We will discuss how to

combine active checkers to maximize performance in Section 3.5.

By applying an active checker for a property π to all feasible paths of a program

P , we can obtain a form of verification for this property, that is stronger than Theorem 1.

Theorem 2 Given a program P as defined above, if a directed search (1) uses a path

constraint generation and constraint solvers that are both sound and complete, and (2) uses

both a passive and an active checker for a property π in all program paths visited during the

search, then the search reports failπ iff there exists a program input that leads to a finite

execution violating φ.

Proof 1 Proof Sketch: Assume there is an input assignment that leads to a finite exe-

cution w of P violating π. Let pcw be the path constraint for the execution path w. Since

path constraint generation and constraint solving are both sound and complete, we know by

Theorem 1 that w will eventually be exercised with some concrete input assignment ~α′. If

the passive checker for π returns failπ for the execution of P obtained from input ~α′ (for

instance, if ~α′ = ~α), the proof is finished. Otherwise, the active checker for π will generate

a formula φC and call the constraint solver with the query pcw ∧ ¬φC . The existence of

~α′ implies that this query is satisfiable, and the constraint solver will return a satisfying

assignment from which a new input assignment ~α′′ is generated (~α′′ could be ~α itself). By

construction, running the passive checker for π on the execution obtained from that new

input ~α′′ will return failπ .

Note that both passive checking and active checking are required in order to ob-

tain this result, as illustrated earlier with the example of Figure 3.1. In practice, however,
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symbolic execution, path constraint generation, constraint solving, passive and active prop-

erty checking are typically not sound and complete, and therefore active property checking

reduces to testing.

3.4 Active Type Checking

Now we describe a framework for specifying active checkers that illustrates their

complementarity with traditional static and dynamic checking. Our approach is inspired by

the “hybrid type checking” of Flanagan [34]. In hybrid type checking, we first attempt to

statically type-check a program against a type environment Γ. Flanagan defines a language

λH for which type-checking is undecidable in general, but which is parameterized with an

algorithmic subtyping judgment Γ ⊢alg S <: T that attempts to decide whether a type S

is a subtype of a type T . This judgment may either terminate or “time out.” The key

property is that if the judgment terminates and answers that S is a subtype of T or that

S is not a subtype of T , then this answer correct. If, on the other hand, the subtyping

judgment times out, we add a run-time membership check for the type T to the program.

Our key addition is that we perform symbolic membership checks for the type T .

A check that an expression e is of type T is compiled to a symbolic expression eT . Then, a

satisfying assignment to pc ∧ ¬eT yields a program input that will fail the run-time check.

We call this active type checking, because we use a constraint solver to “actively” look for

inputs that cause run-time checks to fail. Here, the run-time type membership check is the

passive check we discussed in the previous section.

While Flanagan mentions dynamic test generation in the context of showing that
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Variables x

Values (v) 0|1|n|true|false

Input Parameters α

Guard Set (G) ∅|{(x1, T1), . . . , (xn, Tn), (res, S)}

Commands (C) (G)x := e,C|(G)if e then C else C ′

(G)stop

Operands (o) v|x

Expressions (e) o|op(o1, . . . , on)

SymExpr (se) α|e

op +| − | ∗ |div

BoolExp (e, t) true|false|e ∧ e|e ∨ e|e == e|e < e

| note

Base Types (B) Bool|Int

Types (S, T ) {x : B|t}, S → T

TyEnv (Γ) ∅|Γ, x

Figure 3.2: Syntactic categories and grammar for guarded SimpL.
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1. (∅)x1 := α (∅)x1 := α pc = true, ch = ∅

2. (∅)x2 := 52 (∅)x2 := 52 pc = true, ch = ∅

3. if (x1 > −5) if (x1 > −5) pc = α > −5, ch = ∅

4. then (∅)x3 := div(x2, x1) then ((x1, notzero))W := div(x2, x1) pc = α > −5, ch = {α 6= 0}

Figure 3.3: A small program with an active check for division by zero. The left column
shows the original program. The middle column shows the program with a type cast inserted
as an assignment guard. The right column shows the values of the path condition pc and
the set of checker expressions ch for the input α = 2.

a given program fails to type check, active checking can also provide a form of verification.

As we argued in the previous section, we can combine active type checking with systematic

path exploration to verify for bounded search spaces that no inputs exist which will cause

a run-time check to fail, relative to the completeness of our underlying constraint solver. In

general, active type checking is complementary to static checking and run-time checking:

improved static checking reduces the need for both run-time and active checks, while active

checking may cover cases where a particular static analysis fails.

3.4.1 Judgments and Rules

We now describe active type checking for an extension of the SimpL language in-

troduced above, which we call guarded SimpL. The key additions to SimpL are a set of

checker expressions ch in symbolic evaluation, and a set of type cast guards before assign-

ments. Figure 3.2 shows the syntax, and Figure 3.4 shows the list of judgments used in

our system.

Evaluation. We have a symbolic command evaluation judgment → that takes a command

C, a continuation C ′, a concrete store ∆, and a symbolic store Σ, then returns C ′ and
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〈C,∆,Σ, pc, ch〉 → 〈C ′,∆′,Σ′, pc′, ch′〉 Symbolic Evaluation

〈C,∆〉 → 〈C ′,∆′〉 Concrete Evaluation

Γ ⊢ C Well-typed program

Γ ⊢ e : T Well-typed expression

v ∈ T Value of type T

∆ ∈ Γ Typed concrete state

∆, G ⊢ e Run-time type check

Σ ∈ Γ Typed symbolic state

Σ, G, ch ⊢ ch′ Update active checkers

Σ ⊢ e → v Symbolic evaluation

∆ ⊢ e → v Concrete evaluation

Σ[αi = vi] → ∆ Input substitution

Γ ⊢ C ⇒ C ′ Type guard insertion

Γ ⊢ s ⇒ t Semantic implication

Γ ⊢alg s ⇒ t Algorithmic implication

Γ |= σ Closing substitution

Figure 3.4: Judgments.
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updated stores Σ′ and ∆′. This judgment also updates the path condition pc, and how Σ

maps variables to expressions in symbolic input parameters α.

We also have a concrete evaluation judgment 〈C,∆〉 → 〈C ′,∆′〉 For passive type

checking, each command in guarded SimpL has a set of type cast guards, which may be

the empty set. Each type cast guard is a map from variables to types. If (x, T ) ∈ G, this

represents an assertion that a variable x is a member of the type T . For a command C,

we define guards(C) to be the guard set G associated with the command. The judgment

∆, G ⊢ e represents a run-time check that the values

We also add an additional meta-variable ch to the symbolic evaluation relation.

The meta-variable ch is a set of symbolic expressions obtained from casts, which we call

a set of active checker expressions. The key idea is that each symbolic expression e ∈ ch

is a symbolic type membership check corresponding to a type assertion. At each guarded

command, if the run-time check of the concrete value succeeds, then we add a symbolic

version of the check to the set ch. As evaluation progresses, we add more and more symbolic

checks to ch, such that ch contains symbolic versions of all the type checks that have

occurred on the program path so far.

Because we build the symbolic expressions in the set ch from the type casts, if there

exists a set of inputs v1, . . . , vn to the program that satisfies a path constraint, but falsifies

e ∈ ch, then these inputs will fail the run-time type membership check. This allows us to

check for typing failures by querying a constraint solver with the negation of an expression

in ch together with the path condition pc. We state this more formally below.

We also make use of a concrete expression evaluation judgment ∆ ⊢ e → v. This
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judgment represents substituting concrete values for variables in the expression e and then

reducing the resulting expression to obtain a value v. Similarly, the symbolic expression

evaluation judgment Σ ⊢ e → sv substitutes symbolic values for variables in e and reduces.

Instead of fixing a single set of operations on values in the operational semantics,

we instead specify operators op in a modular way without allowing for full functions. Each

operator op of arity k is given by a type op : S1 → · · · → Sk → T and a semantic im-

plementation function õp. We assume that õp is a partial function that is defined only on

values that are members of its type signature. For concrete evaluation we compile expres-

sions to values and call the semantic implementation function. For symbolic evaluation, we

simply record a symbolic expression. This approach allows us to add additional operators

without needing to re-prove our progress and type preservation theorems from scratch. We

assume that the type of each operator is known globally without need to reference a type

environment explicitly.

Typing Judgments. We have a set of typing judgments, one each for commands, expres-

sions, and stores. Each typing judgment takes a type environment Γ. The typing judgment

for expressions assigns a type to each expression, while the judgments for commands and

stores represent whether these are well-typed or not.

Types in guarded SimpL may be either base types or refinement types. The base

types are Int and Bool. Refinement types are defined using arbitrary predicates applied

to existing types. For example, we can define a type notzero for integers that are not zero

as as notzero : {x : Int|x 6= 0}. Later, we will see how this type can be used in active

checking for division by zero errors. Our basic type rules are shown in 3.7, and the basic
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WT-ConcStr

∀a.∆(a) ∈ Γ(a)

∆ ∈ Γ

WT-SymOp

Σ ⊢ vsi
∈ Ti op : T1 . . . Tn → T

Σ ⊢ op(vs1 , . . . , van
) ∈ T

WT-SymStr

∀a.Σ(a) ∈ Γ(a)

Σ ∈ Γ

Figure 3.5: Typing judgments for concrete and symbolic stores.

TC-Check

G ⊢ e1 : T1, . . . , en : Tn Ti = {xi : Bi|ti} ∀i.∆ ⊢ ti[xi := ei] → true

∆, G ⊢ e1, . . . , en

TC-Upd

G ⊢ e1 : T1, . . . , en : Tn Ti = {xi : Bi|ti} ch′ = ch ∪i {ti[xi := ei]}

G, ch ⊢ ch′

Figure 3.6: Rules for checking type guards and updating checkers.

type rule for refinement types is WT-Base in Figure 3.8. Of special interest is the type

rule T-Op. This rule states that, given a function type for the operator, each argument

is of the appropriate type, and the result type is compatible with the destination of the

assignment. We write v ∈ T to mean that the value v is a member of type T , and we

assume that membership for types is always decidable.

The type rules for stores are shown in Figure 3.5. Intuitively, these rules say that

a concrete is well-typed if and only if all values agree with the types of the variables in Γ.
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For symbolic variables, we associate each α with the type of the variable which initially

points to α. We also define a judgment Σ[αi = vi] → ∆ that represents substituting values

vi for the input parameters αi and reducing each entry in Σ to obtain a concrete store ∆.

This judgment will be useful later on when we discuss the soundness and completeness of

the symbolic expressions built by our active checkers. The key property of this judgment

is that if Σ ∈ Γ, and if for all αi we have that vi ∈ Γ(αi), then the reduction of Σ after

substitution cannot get stuck.

Subtyping. The key feature of the type system, following Flanagan’s λH , is that it defines

subtyping by logical implication between predicates for refinement types of the same base

type. We first define this using a semantic implication judgment Γ ⊢ s ⇒ t, shown in

Figure 3.8. This judgment states that s implies t if and only if all consistent substitutions

for variables in s and t cause the implication to hold. A consistent substitution is the

substitution of a variable of a given type with a value that is a member of the same type.

The rules CS-Base and CS-Ext define a judgment Γ |= σ that states a substitution σ is

consistent with Γ.

Unfortuantely, in general it is undecidable to evaluate this semantic implication.

As a consequence, subtyping is also undecidable. Therefore, we add an algorithmic impli-

cation judgment Γ ⊢a
alg s ⇒ t, where a ∈ {ok,×, ?}. This represents an algorithm that

attempts to decide statically whether the predicate s implies the predicate t. If it succeeds,

then either a = ok and Γ ⊢ s ⇒ t, or a = × and Γ 6⊢ s ⇒ t. The judgment may also time

out and return a “don’t know” answer. In this case, our typecast insertion judgment will

add a cast, which by the rule T-Cast will cause static type checking to proceed.
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T-Var

(v : T ) ∈ Γ

Γ ⊢ v : T

T-Const

Γ ⊢ c : ty(c)

T-Int

Γ ⊢ e : S = {x1 : B|s} G ⊢ e : T = {x2 : B|t} T ′ = {x3 : B|t ∧ s}

Γ ∩ G ⊢ e : T ′

T-Sub

Γ ⊢ e : S Γ ⊢ S <: T

Γ ⊢ e : T

T-Op

Γ ⊢ e1 : S1 . . . Γ ⊢ en : Sn Γ ⊢ op : x1 : S1 → x2 : S2 → · · · → xn : Sn → T

Γ ⊢ op(e1, . . . , en) : T

T-If

Γ ∩ G ⊢ e : Bool Γ ⊢ C Γ ⊢ C ′

Γ ⊢ (G)if e then C else C ′

T-Asn

Γ ∩ G ⊢ e : T Γ ∩ G ⊢ x : T Γ ⊢ C

Γ ⊢ (G)x := e,C

T-Stop

Γ ⊢ stop

Figure 3.7: Type rules.
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WT-Base

Γ, x : B ⊢ t : Bool

Γ ⊢ {x : B|t}

S-Base

Γ, x : B ⊢ s ⇒ t

Γ ⊢ {x : B|s} <: {x : B|t}

SA-Base

Γ, x : B ⊢a
alg s ⇒ t a ∈ {ok,×, ?}

Γ ⊢a
alg {x : B|s} <: {x : B|t}

Imp

∀σ.(Γ |= σ and σ(s) →∗ true implies σ(t) →∗ true)

Γ ⊢ s ⇒ t

CS-Empty

∅ |= ∅

CS-Ext

∅ ⊢ t : T (x := t)Γ |= σ

x : T,Γ |= (x := t, σ)

Figure 3.8: Rules for consistent substitution and subtyping.
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Cast Insertion. The next judgment we consider is that of compiling with typecast insertion.

This judgment Γ ⊢ C ⇒ C ′ maps a command C to a command C ′. Intuitively, this

judgment adds casts to C precisely where algorithmic subtyping times out; these additional

casts make C ′ well-typed. Figure 3.10 shows the defining rules for this judgment. For

example, in the TI-OK-Asn-Var rule, we first check that the identifier x has the type

T in the type environment Γ, and that the variable x′ has the type S. If the algorithmic

subtyping judgment terminates and shows Γ ⊢ok
alg S <: T , then no cast insertion is needed;

the assignment maps to itself. Note that by our syntax, expressions are either simple values,

single variables, or an operator; we do not allow compound expressions.

In contrast, if the algorithmic subtyping judgment times out, we have Γ ⊢?
alg S <:

T and then the rule TI-CHK-Asn-Var applies. The assignment is mapped to a new

assignment with an assertion that x′ is of type T that added to its guard set. Note that if

the algorithmic subtyping judgment concludes that Γ ⊢×
alg S <: T , then we can conclude

statically that the assignment fails type checking and reject the program outright. The

rule for operators is similar, except that we also potentially add guards for operands, and

a guard for a special variable res that holds the result of the operator evaluation.

Cast Evaluation. Finally, we discuss how casts are checked at run-time and the list of

active checker expressions updated. In addition to the basic assignment rule for assignments

with an empty guard set, evaluation includes a rule for guarded assignment evaluation.

To process a type cast for an expression e and a type T , we first we parse the type

T as a refinement type {x : B|t} to extract the Boolean expression t which defines the type.

Next, we check ∆ ⊢ t[x := e] → true, which is the run-time membership check with the
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E-Stop

〈(G)stop,∆,Σ, pc, ch〉 → 〈∆,Σ, pc, ch〉

E-IFTrue

∆, G ⊢ e G, ch ⊢ ch′ ∆ ⊢ e → true Σ ⊢ e → sve pc′ = pc ∧ sve

〈(G)if e then C else C ′,∆,Σ, pc, ch〉 → 〈C,∆′,Σ′, pc′, ch′〉

E-IFFalse

∆, G ⊢ e

G, ch ⊢ ch′ ∆ ⊢ e → false Σ ⊢ e → sve pc′ = pc ∧ not sve

〈(G)if e then C else C ′,∆,Σ, pc, ch〉 → 〈C ′,∆′,Σ′, pc′, ch′〉

E-Op

∀i.∆ei ⊢ vi z = õp(v1, . . . , vn)

∆ ⊢ op(e1, . . . , en) → z

E-CHK-Asn

∆, G ⊢ e G, ch ⊢ ch′ ∆ ⊢ e → v ∆′ = ∆(x 7→ v)

〈(G)x := e,C ′,∆,Σ, pc, ch〉 → 〈C ′,∆′,Σ′, pc, ch′〉

Figure 3.9: Evaluation rules. The E-IFTrue and E-IFFalse rules use the concrete state to
specify how to update the path condition pc and check guards during the evaluation of the
condition e. The E-CHK-Asn rule shows evaluation of type casts. During evaluation, if a
cast 〈Ti〉e fails, evaluation stops. Otherwise, each cast updates the set of checker constraints
ch with a symbolic membership check for the type 〈Ti〉.

concrete program values. This is shown in the rule TC-Check for the judgment ∆, G ⊢ e.

If this check fails, the E-CHK-Asn rule does not apply and the program evaluation will

become stuck. On the other hand, if the check succeeds, then we use the rule TC-Upd to

update the set of checkers ch with a symbolic type membership check to obtain ch’.

Example: Division by Zero. As an example, we show an active checker for division by

zero errors. First, we define the refinement type notzero as the set of values x of type Int

such that x 6= 0. Then, we can define the type of the division operator div as taking an Int

and a notzero argument. Finally, we need a semantic implementation function for division,
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C-OK-Asn

Γ ∩ G ⊢ x : T Γ ∩ G ⊢ e : S Γ ⊢ok
alg S <: T

Γ ⊢ 〈(G)x := e〉 ⇒ 〈(G)x := e〉

C-CHK-Asn-Var

Γ ∩ G ⊢ x : T Γ ∩ G ⊢ x′ : S Γ ⊢?
alg S <: T G′ = G(x′ 7→ T );

Γ ⊢ 〈(G)x := x′〉 ⇒ 〈(G′)x := x′〉

C-CHK-Asn-Op

Γ ∩ G ⊢ e1 : S′
1 . . . Γ ∩ G ⊢ en : S′

n

Γ ∩ G ⊢ op : x1 : S1 → · · · → xn : Sn → T Γ ⊢ x : T ′

∀iΓ ⊢?
alg S′

i <: Si Γ ⊢?
alg T <: T ′ G′ = G(res 7→ T ′, o1 7→ S1, . . . , on 7→ Sn)

〈(G)x := op(e1, . . . , en)〉 ⇒ 〈(G′)x := op(o1, . . . , on)〉

Figure 3.10: Rules for compilation with type cast insertion. Casts are inserted on as-
signments, operator arguments, and on operator return values. The special variable res

represents the result of an operator evaluation. While we show only the rules for when all
arguments or no arguments require casts, we allow any subset of arguments to have casts
inserted.
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notzero : {x : Int|x 6= 0}

div : Int → notzero→ Int

d̃iv(n1, n2) = n1/n2

Figure 3.11: Type and implementation for the division operator.

which here is the standard division function for integers. These are shown in Figure 3.11.

Now, in Figure 3.3 we show an example of active checking a small SimpLA program

for division by zero errors. On the left, we see the original program before type-checking

and compilation. Now we wish to perform static type checking and typecast insertion.

Because div is an operator, at line 4) by the type rule T-Op, we must show that the

type of v1 is a subtype of notzero to prove that the program is well-typed. Therefore,

during typecast insertion, we apply the rule TI-OK-OpAp, the rule TI-CHK-OpAp, or

else statically reject this program as ill-typed. For the purposes of this example, we assume

that the algorithmic implication judgment times out, and so we apply TI-CHK-OpAp to

insert a cast to the type 〈notzero〉. The middle column shows the resulting code after cast

insertion. Finally, suppose the code is run on the concrete input α = 2. The column on the

right shows pc and ch after each command is evaluated. After the first run, we then extract

α 6= 0 from ch and query (α > −5) ∧ ¬(α 6= 0) to a constraint solver to actively check for

an input that causes division by zero.

Example: Integer overflow. We can also perform active type checking for integer over-

flow in our framework. Integer overflow and related machine arithmetic errors are a frequent

cause of security-critical bugs; the May 2007 MITRE survey of security bugs reported notes

that integer overflows were the second most common bug in operating system vendor advi-
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Z = {x : Int| −∞ < x < ∞}

uint64 t = {x : Int|0 ≤ x < 264}

int64 t = {x : Int| − 263 ≤ x < 263}

uint32 t = {x : Int|0 ≤ x < 232}

int32 t = {x : Int| − 231 ≤ x < 231}

uint16 t = {x : Int|0 ≤ x < 216}

int16 t = {x : Int| − 215 ≤ x < 215}

uint8 t = {x : Int|0 ≤ x < 28}

int8 t = {x : Int| − 27 ≤ x < 27}

Figure 3.12: Types for an integer overflow checker.

sories [23]. Brumley et al. describe a system of dynamic checks called RICH that catches

machine arithmetic errors at run-time and abort program execution before the error can

propagate further [11]. The basic idea of their approach is to define upper and lower bounds

for signed and unsigned integer types, then insert a dynamic check whenever a potentially

unsafe assignment is carried out, i.e. when a value outside the bounds of an integer type

could be stored into a variable of that type.

We can capture the RICH checks with the refinement types in Figure 3.12. Given

an annotation of variables with these types, the SimpLA type rules automatically insert

casts for assignments between variables of different types. For example, suppose that a

variable x has type uint8 t . Then an assignment of an expression e to x may insert a cast

〈uint8 t 〉 if the algorithmic implication judgment cannot decide statically whether e falls
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within the bounds of uint8 t or not. At run-time, the cast 〈uint8 t 〉e checks that the

concrete value of the expression e is between 0 and 28, just as in the RICH system. If the

run-time check succeeds, then we symbolically evaluate e to obtain a symbolic expression

sze, then add the expression (0 ≤ sze < 28) to the set of checkers ch. We can then query

pc ∧ ¬(0 ≤ sze < 28) to a constraint solver and solve for an input that violates the type

bounds.

Properties of Active Type Checking.

We now state several important properties of active type checking. We begin with

basic type preservation and progress theorems.

Theorem 3 (Type preservation for expressions.) Suppose that Γ ⊢ e : T , Γ ⊢ ∆, and

∆ ⊢ e → z. Then Γ ⊢ z : T .

Suppose that Γ ⊢ C, ∆ ∈ Γ, and 〈C∆, 〉 → 〈C ′,∆′〉. Then Γ ⊢ C ′

Definition 3 (Failed cast.) We say that an expression 〈T 〉e is a failed cast under ∆ if

∆ ⊢ e → z and ∅ 6⊢ z : T . We say a command C contains a failed cast under ∆ if there

exists 〈Ti〉e ∈ guards(C) such that 〈Ti〉e is a failed cast under ∆.

Theorem 4 (Progress.) Suppose that Γ ⊢ C, ∆ ∈ Σ, and ∆ ∈ Γ. Then either 〈C,∆〉 →

〈C ′,∆′〉, or C contains a failed cast under ∆.

We then want to show that a program is always well-typed after compilation.

Theorem 5 (Well-typed compilation.) Suppose that Γ ⊢ C ⇒ C ′. Then Γ ⊢ C ′.
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Proof 2 By induction on the derivation. The main observation is that compilation adds

casts precisely where the algorithmic subtyping judgment cannot decide subtyping.

Next, we argue that unless a cast fails, compilation does not change how the concrete state of

the program is updated on each command. This rules out the trivial compilation procedure

ΓC ⇒ C ′ that sets C ′ to nil.

Theorem 6 (Semantic preservation.) Suppose Γ ⊢ C ⇒ C ′. For all finite k, if 〈C,∆〉 →k

〈C2,∆
′〉, then either 〈C ′,∆〉 →k 〈C ′

2,∆
′〉, or there exists an i with 0 ≤ i ≤ k such that

〈C ′,∆〉 →i 〈C ′′′,∆′′〉 and C ′′′ contains a failed cast under ∆′′.

Proof 3 By induction on the derivation Γ ⊢ C ⇒ C ′. First prove that adding a single

cast does not change the program’s concrete semantics. Then induct on the number of casts

added. The main observation is that compilation only adds casts but does not otherwise

change the program, casts do not have side effects, and each non-failed evaluation step

removes casts.

Well-typed compilation combined with the progress theorem states a program after compi-

lation can fail only at an inserted cast. We say that a program is well-behaved if no concrete

inputs exist that cause the program to reach a command that contains a failed cast. The

key point is that the set ch of checker expressions are sound and complete active checkers

for the the property of being well-behaved. That is, if we find values v1, . . . , vn which, when

substituted into the unknowns α1, . . . , αn, cause the path condition to evaluate to true but

a checker expression in ch to evaluate to false, then these values will cause a run-time

check failure. First, we prove a lemma that states concrete values that satisfy a symbolic

path condition will cause execution to follow the same path.
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Lemma 1 (Lockstep Lemma.) Suppose Γ ⊢ C, ∆0 ∈ Γ, and Σ0 ∈ Γ. For all k ≥ 0, let

〈C,∆0,Σ0, pc0, ch0〉 →
k 〈Ck,∆k,Σk, pck, chk〉.

Suppose the values v1, . . . , vn satisfy ∅ ⊢ pc[αi = vi] → true, that Γ ⊢ αi : Ti,

that ∀i.vi ∈ Ti, and Σ0[αi = vi] → ∆′. For all 0 ≤ i ≤ k, let 〈C,∆′,Σ0, pc0, ch0〉 →

〈C ′
i,∆

′
i,Σ

′
i, pc′i, ch

′
i〉. Then Ci = C ′

i and pci = pc′i orC ′
i contains a failed cast under ∆′

i.

Proof 4 For each fixed k, we induct on i. The non-trivial inductive cases are E-IFTrue

and E-IFFalse, as no other rules update pc or cause control flow change. We argue that

because the values vi satisfy pck, and because each pci is a prefix of pck, then the values vi

must also satisfy pci for 0 ≤ i ≤ k. Because each pci is a conjunction of if conditions, we

therefore have for an if statement with guard bi that if ∆i ⊢ bi → v then ∆′
i ⊢ bi → v. This

causes control flow and the program counter to be updated as desired.

Theorem 7 (Soundness and Completeness of Active Type Checking.) Suppose Γ ⊢ C, ∆0 ∈

Gamma, and Σ0 ∈ Γ. For all k ≥ 0, suppose 〈C,∆0,Σ0, pc0, ch0〉
k → 〈Ck,∆k,Σk, pck, chk〉.

Suppose the values v1, . . . , vn satisfy ∅ ⊢ pc[αi = vi] → true, that Γ ⊢ αi : Ti, that

∀i.vi ∈ Ti, and Σ[αi = vi] → ∆′.

Then there exists an expression e ∈ (chi−chi−1) such that ∅ ⊢ ¬e[αi = vi] → true

if and only if for some i ≤ k, we have 〈C,∆′,Σ, pc0, ch0〉 →
i 〈C ′,Σ′′,∆′′, pc′, ch′′〉 and C ′

contains a failed cast under ∆′′.

Note that we allow for the new values to cause a cast failure at any program state before

the k’th evaluation. We need this because the execution may potentially fail a cast before

reaching the k’th command.
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Finally, we turn our attention to the question of combining checks for different

properties by adding additional type annotations to our type environment. For example,

we might want to simultaneously check for division by zero and integer overflow. We can

think of the combination as follows: we start with a type environment Γdiv that contains

only the type of the division operator. Next, we add type annotations to check for integer

overflow to Γdiv to obtain Γdiv,int. This type environment contains enough annotations and

types to simultaneously check both properties.

We then want monotonicity of combination. That is, suppose ΓdivC ⇒ C ′, and

Γdiv,intC ⇒ C ′′. Then if C ′ contains a failed cast under some concrete store ∆, we would like

C ′′ to also fail a cast under the same concrete store ∆. Put another way, adding properties

should be conservative in the set of programs rejected. Note that C ′′ may not fail at the

same cast as C ′, because the same concrete values may trigger multiple errors. Checking

additional properties in may mean catching an error earlier in execution, and so C ′′ might

not progress to the same cast where C ′ fails.

The following theorem states a condition for augmenting a type environment Γ to

obtain a new type environment Γ′ in a “consistent” way so this monotonicity property holds.

Specifically, if this condition is met, then the casts inserted by the compilation judgment

with Γ′ will reject at least as many programs for run-time errors as the casts inserted by

compiling with Γ.

Theorem 8 (Conservation Under Additional Checks.) We say that Γ <: Γ′ if the following

two conditions hold :

1. for all variables vi such that Γ ⊢ viSi, and Γ′ ⊢ S′
i, we have Γ′ ⊢ Si <: S′

i
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2. for all operators opi Γ ⊢ opix1 : T1 → · · · → xn : Tn → T and Γ ⊢ opix1 : T ′
1 → · · · →

xn : T ′
n → T , we have Γ′ ⊢ Ti <: T ′

i .

Suppose Γ <: Γ′. Then the following properties hold:

1. If Γ ⊢ C and Γ ⊢ ∆, then Γ′ ⊢ C and Γ′ ⊢ ∆.

2. Suppose Γ ⊢ C ⇒ C ′ and Γ′ ⊢ C ⇒ C ′′. For all k ≥ 0, for all ∆0 ∈ Γ, for

〈C ′,∆0〉 →
k 〈C ′

k,∆
′
k, then if C ′

k contains a failed cast under ∆′
k, then there exists an

i, with 0 ≤ i ≤ k such that 〈C ′′,∆0〉 → 〈C ′′
i ,∆′′

i 〉 and C ′′
i contains a failed cast under

∆′′
i .

3.5 Optimizations

3.5.1 Minimizing Calls to the Constraint Solver

As discussed in Section 3.3, (negations of) constraints injected by various active

checkers in a same path constraint can be solved independently one-by-one since they have

no side effects. We call this a naive combination of checker constraints.

However, the number of calls to the constraint solver can be reduced by bundling

together constraints injected at the same or equivalent program states into a single con-

junction. If pc denotes the path constraint for a given program state, and φC1, . . . , φCn

are a set of constraints injected in that state by each of the active checkers, we can define

the combination of these active checkers by injecting the formula φC = φC1 ∧ · · · ∧ φCn in

the path constraint, which will result in the single query pc ∧ (¬φC1 ∨ · · · ∨ ¬φCn) to the

constraint solver. We can also bundle in the same conjunction constraints φCi injected by
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Procedure CombineActiveCheckers(I, pc, φC1, . . . , φCn):

1. Let x = Solve(pc ∧ (¬φC1 ∨ · · · ∨ ¬φCn))

2. If x = UNSAT return I

3. For all i in [1, n], eliminate φCi if x satisfies ¬φCi

4. Let φC1, . . . , φCm denote the remaining φCi (m < n)

5. If m = 0, return I ∪ {x}

6. Call CombineActiveCheckers(I ∪ {x}, pc, φC1, . . . , φCm)

Figure 3.13: Function to compute a strongly-sound combination of active checkers.

active checkers at different program states anywhere in between two conditional statements,

i.e., anywhere between two constraints in the path constraint (since those program states

are indistinguishable by that path constraint). This combination reduces the number of

calls to the constraint solver but, if the query pc ∧ (¬φC1 ∨ · · · ∨ ¬φCn) is satisfied, a sat-

isfying assignment produced by the constraint solver may not satisfy all the disjuncts, i.e.,

may violate only some of the properties being checked. Hence, we call this a weakly-sound

combination.

A strongly-sound, or sound for short, combination can be obtained by making

additional calls to the constraint solver using the simple function shown in Figure 3.13. By

calling

CombineActiveCheckers(∅, pc, φC1, . . . , φCn)

the function returns a set I of input values that covers all the disjuncts that are satisfiable in
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the formula pc∧(¬φC1∨· · ·∨¬φCn). The function first queries the solver with the disjunction

of all the checker constraints (line 1). If the solver returns UNSAT, we know that all these

constraints are unsatisfiable (line 2). Otherwise, we check the solution x returned by the

constraint solver against each checker constraint to determine which are satisfied by solution

x (line 3). (This is a model-checking check, not a satisfiability check; in practice, this can be

implemented by calling the constraint solver with the formula
∧

i(bi ⇔ ¬φCi) ∧ pc ∧ (
∨

i bi)

where bi is a fresh boolean variable which evaluates to true iff ¬φCi is satisfied by a satisfying

assignment x returned by the constraint solver; determining which checker constraints are

satisfied by x can then be done by looking up the values of the corresponding bits bi in

solution x.) Then, we remove these checker constraints from the disjunction (line 4), and

query the solver again until all checker constraints that can be satisfied have been satisfied

by some input value in I. If t out of the n checkers can be satisfied in conjunction with

the path constraint pc, this function requires at most min(t + 1, n) calls to the constraint

solver, because each call removes at least one checker from consideration. Obtaining strong

soundness with fewer than t calls to the constraint solver is not possible in the worse case.

Note that the naive combination defined above is strongly-sound, but always requires n

calls to the constraint solver.

It is worth emphasizing that none of these combination strategies attempt to min-

imize the number of input values (solutions) needed to cover all the satisfiable disjuncts.

This could be done by querying first the constraint solver with the conjunction of all checker

constraints to check whether any solution satisfies all these constraints simultaneously, i.e.,

to check whether their intersection is non-empty. Otherwise, one could then iteratively
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query the solver with smaller and smaller conjunctions to force the solver to return a min-

imum set of satisfying assignments that cover all the checker constraints. Unfortunately,

this procedure may require in the worse case O(2n) calls to the constraint solver. (The

problem can be shown to be NP-complete by a reduction from the NP-hard SET-COVER

problem.)

Weakly and strongly sound combinations capture possible overlaps, inconsistencies

or redundancies between active checkers at equivalent program states, but is independent of

how each checker is specified: it can be applied to any active checker that injects a formula

at a given program state. Also, the above definition is independent of the specific reasoning

capability of the constraint solver. In particular, the constraint solver may or may not be

able to reason precisely about combined theories (abstract domains and decision procedures)

obtained by combining individual constraints injected by different active checkers. Any level

of precision is acceptable with our framework and is an orthogonal issue (e.g., see [45]).

Whether the constraint solver supports incremental solving is also orthogonal.

3.5.2 Minimizing Formulas

Minimizing the number of calls to the constraint solver should not be done at the

expense of using longer formulas. Fortunately, the above strategies for combining constraints

injected by active checkers also reduce formula sizes.

For instance, consider a path constraint pc and a set of n constraints φC1 . . . φCn

to be injected at the end of pc. The naive combination makes n calls to the constraint

solver, each with a formula of length |pc| + |φCi|, for all 1 ≤ i ≤ n. In contrast, the

weak combination makes only a single call to the constraint solver with a formula of size
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|pc|+Σ1≤i≤n|φCi|, i.e., a formula (typically much) smaller than the sum of the formula sizes

with the naive combination. The strong combination makes, in the worse case, n calls to

the constraint solver with formulas of size |pc|+ Σ1≤i≤j|φCi| for all 1 ≤ j ≤ n, i.e., possibly

bigger formulas than the naive combination. But often, the strong combination makes fewer

calls than the naive combination, and matches the weak combination in the best case (when

none of the disjuncts ¬φCi are satisfiable).

In practice, path constraints pc tend to be long, much longer than injected con-

straints φCi. A simple optimization (implemented in [40, 17, 81, 43]) consists of eliminating

the constraints in pc which do not share symbolic variables (including by transitivity) with

the negated constraint c to be satisfied. This unrelated constraint elimination can be done

syntactically by constructing an undirected graph G with one node per constraint in pc∪{c}

and one node per symbolic (input) variable such that there is an edge between a constraint

and a variable iff the variable appears in the constraint. Then, starting from the node

corresponding to constraint c, one performs a (linear-time) traversal of the graph to deter-

mine with constraints c′ in pc are reachable from c in G. At the end of the traversal, only

the constraints c′ that have been visited are kept in the conjunction sent to the constraint

solver, while the others are eliminated.

With unrelated constraint elimination and the naive checker combination, the size

of the reduced path constraint pci may vary when computed starting from each of the n

constraints φCi injected by the active checkers. In this case, n calls to the constraint solver

are made with the formulas pci ∧¬φCi, for all 1 ≤ i ≤ n. In contrast, the weak combination

makes a single call to the constraint solver with the formula pc′∧(∨i¬φCi) where pc′ denotes
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1 #define k 100 // constant

2 void Q(int *x, int a[k]){ // inputs

3 int tmp1,tmp2,i;

4 if (x == NULL) return;

5 for (i=0; i<=k;i++) {

6 if (a[i]>0) tmp1 = tmp2+*x;

7 else tmp2 = tmp1+*x;

8 }

9 return;

10}

Figure 3.14: A program with O(2k) possible execution paths. A naive application of a NULL
dereference active checker results in O(k · 2k) additional calls to the constraint solver, while
local constraint caching eliminates the need for any additional calls to the constraint solver.

the reduced path constraint computed when starting with the constraint ∨i¬φCi. It is easy

to see that |pc′| ≤ Σi|pci|, and therefore that the formula used with the weak combination

is again smaller than the sum of the formula sizes used with the naive combination. Loosely

speaking, the strong combination includes again both the naive and weak combinations as

two possible extremes.

3.5.3 Caching Strategies

No matter what strategy is used for combining checkers at a single program point,

constraint caching can significantly reduce the overhead of using active checkers.

To illustrate the benefits of constraint caching, consider a NULL dereference active

checker (see Section 3.3) and the program Q in Figure 3.14. Program Q has 2k+1 executions,

where 2k of those dereference the input pointer x k times each. A naive approach to dynamic

test generation with a NULL dereference active checker would inject k constraints of the

form x 6= NULL at each dereference of *x during every such execution of Q, which would

result in a total of k · 2k additional calls to the constraint solver (i.e., k calls for each of
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those executions).

To limit this expensive number of calls to the constraint solver, a first optimization

consists of locally caching constraints in the current path constraint in such a way that

syntactically identical constraints are never injected more than once in any path constraint.

(Remember path constraints are simply conjunctions.) This optimization is applicable to

any path constraint, with or without active checkers. The correctness of this optimization

is based on the following observation: if a constraint c is added to a path constraint pc, then

for any longer pc′ extending pc, we have pc′ ⇒ pc (where ⇒ denotes logical implication)

and pc′ ∧ ¬c will always be unsatisfiable because c is in pc′. In other words, adding the

same constraint multiple times in a path constraint is pointless since only the negation of

its first occurrence has a chance to be satisfiable.

Constraints generated by active checkers can be dealt with by injecting those in the

path constraint like regular constraints. Indeed, for any constraint c injected by an active

checker either at the end of a path constraint pc or at the end of a longer path constraint

pc′ (i.e., such that pc′ ⇒ pc), we have the following:

• if pc ∧ ¬c is unsatisfiable, then pc′ ∧ ¬c is unsatisfiable;

• conversely, if pc′ ∧ ¬c is satisfiable, then pc ∧ ¬c is satisfiable (and has the same

solution).

Therefore, we can check ¬c as early as possible, i.e., in conjunction with the shorter pc, by

inserting the first occurrence of c in the path constraint. If an active checker injects the

same constraint later in the path constraint, local caching will simply remove this second

redundant occurrence.
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By injecting constraints generated by active checkers into regular path constraints

and by using local caching, a given constraint c, like x 6= NULL in our previous example, will

appear at most once in each path constraint, and a single call to the constraint solver will be

made to check its satisfiability for each path, instead of k calls as with the naive approach

without local caching. Moreover, because the constraint x 6= NULL already appears in the

path constraint due to the if statement on line 4 before any pointer dereference *x on

lines 6 or 7, it will never be added again to the path constraint with local caching, and no

additional calls will be made to the constraint solver due to the NULL pointer dereference

active checker for this example.

Another optimization consists of caching constraints globally [17]: whenever the

constraint solver is called with a query, this query and its result are kept in a (hash) table

shared between execution paths during a directed search. In Section 3.7, the effect of both

local and global caching is measured empirically.

3.6 Implementation

We implemented active checkers as part of a dynamic test generation tool called

SAGE (Scalable, Automated, Guided Execution) [43]. SAGE uses the iDNA tool [7] to trace

executions of Windows programs, then virtually re-executes these traces with the TruScan

trace replay framework [73]. During re-execution, SAGE checks for file read operations

and marks the resulting bytes as symbolic. As re-execution progresses, SAGE generates

symbolic constraints for the path constraint. After re-execution completes, SAGE uses the

constraint solver Disolver [49] to generate new input values that will drive the program
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Number Checker Number Checker

0 Path Exploration 7 Integer Underflow

1 DivByZero 8 Integer Overflow

2 NULL Deref 9 MOVSX Underflow

3 SAL NotNull 10 MOVSX Overflow

4 Array Underflow 11 Stack Smash

5 Array Overflow 12 AllocArg Underflow

6 REP Range 13 AllocArg Overflow

Figure 3.15: Active checkers implemented.

down new paths. SAGE then completes this cycle by testing and tracing the program on

the newly generated inputs. The new execution traces obtained from those new inputs are

sorted by the number of new code blocks they discover, and the highest ranked trace is

expanded next to generate new test inputs and repeat the cycle [43]. While we describe in

the technical report version of this paper how to combine static analysis with active property

checking, the current SAGE implementation does not perform any static analysis [42].1

The experiments reported in the next section were performed with 13 active check-

ers, shown in Figure 3.15 with an identifying number. The number 0 refers to a constraint

generated by observing a branch on tainted data, as in basic DART or EXE, that becomes

part of the path constraint. Number 1 refers to a division-by-zero checker, 2 denotes a NULL

pointer dereference checker, and 4 and 5 denote array underflow and overflow checkers (see

1Static analysis of the codec applications discussed next is problematic due to function pointers and
in-line assembly code.
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Section 3.3). Number 3 refers to an active checker that looks for function arguments that

have been annotated with the notnull attribute in the SAL property language [47], and

attempts to force those to be NULL. Checker type 6 looks for the x86 REP MOVS instruc-

tion, which copies a range of bytes to a different range of bytes, and attempts to force a

condition where the ranges overlap, causing unpredictable behavior. Checkers 7 and 8 are

for integer underflows and overflows. Checkers type 9 and 10 target the MOVSX instruction,

which sign-extends its argument and may lead to loading a very large value if the argument

is negative. The “stack smash” checker, type 11, attempts to solve for an input that directly

overwrites the stack return pointer, given a pointer dereference that depends on a symbolic

input. Finally, checkers type 12 and 13 look for heap allocation functions with symbolic

arguments; if found, they attempt to cause overflow or underflow of these arguments.

An active checker in SAGE first registers a TruScan callback for specific events

that occur during re-execution. For example, an active checker can register a callback that

fires each time a symbolic input is used as an address for a memory operation. The callback

then inspects the concrete and symbolic state of the re-execution and decides whether or

not to emit an active checker constraint. If the callback does emit such a constraint, SAGE

stores it in the current path constraint.

SAGE implements a generational search [43]: given a path constraint, all the

constraints in that path are systematically negated one-by-one, placed in a conjunction with

the prefix of the path constraint leading it, and attempted to be solved with the constraint

solver. Constraints injected by active checkers are inserted in the path constraint and

treated as regular constraints during a generational search.



92

Because we work with x86 machine-code traces, some information we would like

to use as part of our active checkers is not immediately available. For example, when SAGE

observes a load instruction with a symbolic offset during re-execution, it is not clear what

the bound should be for the offset. We work around these limitations by leveraging the

TruScan re-execution infrastructure. During re-execution, TruScan observes calls to known

allocator functions. By parsing the arguments to these calls and their return values, as well

as detecting the current stack frame, TruScan builds a map from each concrete memory

address to the bounds of the containing memory object. We use the bounds associated with

the memory object pointed to by the concrete value of the address as the upper and lower

bound for an active bounds check of the memory access. Therefore, source code or debug

symbols are not required, although they may be used if available.

3.7 Evaluation

We report results of experiments with active checkers and two applications which

play media files and are widely used on Windows. Figure 3.16 shows the result of a single

symbolic execution and test generation task for each of these two test programs. The second

column indicates which checkers injected constraints during that program execution. The

last column gives the number of symbolic input bytes read during that single execution,

which is 100 to 1,000 times larger than previously reported with dynamic test generation [40,

17, 81].

For each application, we ran microbenchmarks to quantify the marginal cost of

active checking during a single symbolic execution task and measure the effectiveness of our
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Test Checkers Injected Time (secs) pc size # checker constraints # Tests

Media 1 0,2,4,5,7,8 37 67 46 105

Media 2 0,1,2,4,5,7,8,9,10,11 1226 2990 6080 5122

Test # Instructions Symbolic Input Size

Media 1 3795771 65536

Media 2 279478553 27335

Figure 3.16: Statistics from a single symbolic execution and test generation task with a
naive combination of all 13 checkers. We report the checker types that injected constraints,
the total time for symbolic execution test generation, the number of constraints in the
total path constraint, the total number of injected checker constraints, the number of tests
generated, the number of instructions executed after the first file read, and the number of
symbolic input bytes.

optimizations. We then performed long-running searches with active checkers to investigate

their effectiveness at finding bugs. These searches were performed on a 32-bit Windows

Vista machine with two dual-core AMD Opteron 270 processors running at 2 GHz, with

4 GB of RAM and a 230 GB hard drive; all four cores were used in each search. We now

describe observations from these experiments. We stress that these observations are from

a limited sample size and should be taken with caution.

3.7.1 Microbenchmarks

Figure 3.17 presents statistics for our two test programs obtained with a single

symbolic execution and test generation task with no active checkers, or the weak, strong

and naive combinations of active checkers discussed in Section 3.5. For each run, we report

the total run time (in seconds), the time spent in the constraint solver (in seconds), the
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Media 1 none weak strong naive

Total Time (s) 16 37 42 37

Solver Time (s) 5 5 10 5

# Tests Gen 59 70 87 105

# Disjunctions N/A 11 11 N/A

Dis. Min/Mean/Max N/A 2/4.2/16 2/4.2/16 N/A

# Path Constr. 67 67 67 67

# Checker Constr. N/A 46 46 46

# Solver Calls 67 78 96 113

Max CtrList Size 77 141 141 141

Mean CtrList Size 2.7 2.7 2.7 3

Local Cache Hit 79% 81% 88% 88%

Media 2 none weak strong naive

Total Time (s) 761 973 1140 1226

Solver Time (s) 421 463 601 504

# Tests Gen 1117 1833 2734 5122

# Disjunctions N/A 1125 1125 N/A

Dis. Min/Mean/Max N/A 1/5.4/216 1/5.4/216 N/A

# Path Constr. 3001 2990 2990 2990

# Checker Constr. N/A 6080 6080 6080

# Solver Calls 3001 4115 5368 9070

Max CtrList Size 11141 91739 91739 91739

Mean CtrList Size 368 373 373 372

Local Cache Hit 39% 19.5% 19.5% 19.5%

Figure 3.17: Microbenchmark statistics.
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number of test generated, the number of disjunctions bundling together checker constraints

(if applicable) before calling the constraint solver, the minimum, mean and maximum num-

ber of constraints in disjunctions (if applicable2), the total number of constraints in the path

constraint, the total number of constraints injected by checkers, the number of calls made

to the constraint solver, statistics about the size needed to represent all path and checker

constraints (discussed further below) and the local cache hit. Each call to the constraint

solver was set with a timeout value of 5 seconds, which we picked because almost all queries

we observed terminated within this time.

Checkers produce more test cases than path exploration at a reasonable cost.

As expected, using checkers increases total run time but also generates more tests. For

example, all checkers with naive combination for Media 2 creates 5122 test cases in 1226

seconds, compared to 1117 test cases in 761 seconds for the case of no active checkers; this

gives us 4.5 times as many test cases for 61% more time spent in this case. As expected

(see Section 3.5), the naive combination generates more tests than the strong combination,

which itself generates more tests than the weak combination. Perhaps surprisingly, most of

the extra time is spent in symbolic execution, not in solving constraints. This may explain

why the differences in runtime between the naive, strong and weak cases are relatively not

that significant. Out of curiosity, we also ran experiments (not shown here) with a “basic”

set of checkers that consisted only of Array Bounds and DivByZero active checkers; this

produced fewer test cases, but had little to no runtime penalty for test generation for both

test programs.

2In the strong case, the mean number does not include disjunctions iteratively produced by the algorithm
of Figure 3.13, which explains why the mean is the same as in the weak case.
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Weak combination has the lowest overhead. We observed that the solver time for

weak combination of disjunctions was the lowest for Media 2 runs with active checkers and

tied for lowest with the naive combination for Media 1. The strong disjunction generates

more test cases, but surprisingly takes longer than the naive combination in both cases. For

Media 1, this is due to the strong combination hitting one more 5-second timeout constraints

than the naive combination. For Media 2, we believe this is due to the overhead involved

in constructing repeated disjunction queries. Because disjunctions in both cases have fairly

few disjuncts on average (4 or 5), this overhead dominates for the strong combination, while

the weak one is still able to make progress by handling the entire disjunction in one query.

For the SAGE system, the solver used requires less than a second for most queries.

Therefore the time improvement for weak combination over naive combination in this mi-

crobenchmark is small, saving roughly 3 minutes, even though the number of calls to the

solver is in fact reduced by almost 50%. Other implementations may obtain better time

performance, especially if they more precisely model memory or include more difficult con-

straints. Both figures include the effect of other optimizations, such as caching, which we

show are important for active checking.

Unrelated constraint elimination is important for checkers. Our implementation of

the unrelated constraint optimization described in Section 5.2 introduces additional common

subexpression variables. Each of these variable defines a subexpression that appears in more

than one constraint. In the worst case, the maximum possible size of a list of constraints

passed to our constraint solver is the sum of the number of these variables, plus the size of the

path constraint, plus the number of checker constraints injected. We collected the maximum
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possible constraint list size (Max CtrList Size) and the mean size of constraint lists produced

after our unrelated constraint optimization (Mean CtrList Size). The maximum possible

size does not depend on our choice of weak, strong, or naive combination, but the mean list

size is slightly affected. We observe in the Media 2 microbenchmarks that the maximum

possible size jumps dramatically with the addition of checkers, but that the mean size stays

almost the same. Furthermore, even in the case without checkers, the mean list size is 100

times smaller than the maximum. The Media 1 case was less dramatic, but still showed

post-optimization constraint lists an order of magnitude smaller than the maximum. This

shows that unrelated constraint optimization is key to efficiently implement active checkers.

3.7.2 Macrobenchmarks

For macrobenchmarks, we ran a generational search for 10 hours starting from the

same initial media file, and generated test cases with no checkers, and with the weak and

strong combination of all 13 checkers. We then tested each test case by running the program

with AppVerifier [22], configured to check for heap errors. For each crashing test case, we

recorded the checker kinds responsible for the constraints that generated the test. Since

a search can generate many different test cases that exhibit the same bug, we “bucket”

crashing files by the stack hash of the crash, which includes the address of the faulting

instruction. We also report a bucket kind, which is either a NULL pointer dereference, a

read access violation (ReadAV), or a write access violation (WriteAV). It is possible for the

same bug to be reachable by program paths with different stack hashes for the same root

cause. Our experiments always report the distinct stack hashes. We also computed the hit

rate for global caching during each search.



98

Crash Bucket Kind 0 2 4 5 7 8

1867196225 NULL No/W/S W/S W/S

1867196225 ReadAV No/W W W

1277839407 ReadAV S

1061959981 ReadAV S S S

1392730167 ReadAV S

1212954973 ReadAV S S S

1246509355 ReadAV S W/S W/S

1527393075 ReadAV S

1011628381 ReadAV S W/S

2031962117 ReadAV No/W/S

286861377 ReadAV No/S

842674295 WriteAV S S S S

Figure 3.18: Crash buckets found for Media 1 by 10-hour searches with “No” active checkers,
with a “W”eak and “S”trong combinations of active checkers. A total of 41658 tests were
generated and tested in 30 hours, with 783 crashing files in 12 buckets.

Crash Bucket Kind 0

790577684 ReadAV No/W/S

825233195 ReadAV No/W/S

795945252 ReadAV No/W/S

1060863579 ReadAV No/W

Figure 3.19: Crash buckets found for Media 2 by 10-hours searches with “No” active
checkers, with a “W”eak and “S”trong combinations of active checkers. A total of 11849
tests were generated and tested in 30 hours, with 25 crashing files in 4 buckets.
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Media 1 0 2 4 5 7 8

Injected 27612 26 13 13 11153 11153

Solved 18056 22 2 3 3179 5552

Crashes 339 22 2 3 139 136

Yield 1.9% 100% 100% 100% 4.4% 2.4%

Figure 3.20: Constraints injected by checker types, solved, crashes, and yield for Media 1,
over both weak and strong combination for 10-hour searches.

Checkers can find bugs missed by path exploration. Figure 3.18 shows the crash

buckets found for Media 2 by 10-hours searches with “No” active checkers, with a “W”eak

and “S”trong combinations of active checkers. For instance, an “S” in a column means that

at least one crash in the bucket was found by the search with strong combination. The

type of checkers whose constraint found the crash bucket is also indicated in the figure. For

Media 1, the Null Deref (type 2) active checker found 2 crash buckets, the Array Underflow

and Overflow (types 4 and 5) active checkers found 3 crash buckets, while the Integer

Underflow and Overflow (types 7 and 8) active checkers found 7 crash buckets. Without

any active checkers, the tool is able to find only 4 crash buckets in 10 hours of search, and

misses the serious WriteAV bug detected by the strong combination only. For Media 2, in

contrast, the test cases generated by active checkers did not find any new crash buckets, as

shown in Figure 3.19. The Media 1 case shows on some programs, checkers are effective at

finding several important bugs missed by path exploration alone, but the Media 2 example

shows this does not hold for all programs.

Checker yield can vary widely. Figures 3.20and 3.21 report the overall number of
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Media 2 0 1 2 4 5

Injected 13425 12 2146 1544 1551

Solved 4735 0 61 10 20

Crashes 7 0 0 0 0

Yield 1.4% N/A 0% 0% 0%

7 8 9 10 11

Injected 11158 11177 5 5 10

Solved 576 2355 0 5 0

Crashes 0 0 0 0 0

Yield 0% 0% N/A 0% N/A

Figure 3.21: Constraints injected by checker types, solved, crashes, and yield for Media 2,
over both weak and strong combination for 10-hour searches.
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injected constraints of each type during all 10-hours searches, and how many of those were

successfully solved to create new test cases. It also reports the checker yield, or percentage of

test cases that led to crashes. For Media 1, active checkers have a higher yield than test cases

generated by path exploration (type 0). For Media 2, several checkers did inject constraints

that were solvable, but their yield is 0% as they did not find any new bugs. The yield

indicates how precise symbolic execution is. For Media 1, symbolic execution is very precise

as every checker constraint violation for checker types 2, 4 and 5 actually leads to a crash (as

is the case with a fully sound and complete constraint generation and solving as shown in

Section 3.3); even if symbolic execution is perfect, the yield for the integer under/overflow

active checkers may be less than 100% because not every integer under/overflow leads to a

crash. In contrast, symbolic execution in our current implementation does not seem precise

enough for Media 2, as yields are poor for this benchmark.

Local and global caching are effective. Local caching can remove a significant number

of constraints during symbolic execution. For Media 1, we observed a 80% or more local

cache hit rate (see Figure 3.17). For Media 2, the hit rates were less impressive but still

removed roughly 20% of the constraints.

Our current implementation does not have a global cache for query results (see

Section 3.5). To measure the impact of global caching on our macrobenchmark runs, we

added code that dumps to disk the SHA-1 hash of each query to the constraint solver, and

then computes the global cache hit rate. For Media 1, all searches showed roughly a 93% hit

rate, while for Media 2 we observed 27%. This shows that there are significant redundancies

in queries made by different test generation tasks during the same search.
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3.8 Conclusion

The more one checks for property violations, the more one should find software

errors. We have defined and studied active property checking, a new form of dynamic prop-

erty checking based on dynamic symbolic execution, constraint solving and test generation.

We showed how active type checking extends traditional static and dynamic type checking.

We presented several optimizations to implement active property checkers efficiently, and

discussed results of experiments with several large shipped Windows applications. Active

property checking was able to detect several new bugs in those applications. While our

results are for x86 binaries, our techniques apply to any architecture and could be used for

testing of other systems.

Overall, we showed that without careful optimizations, active property checking

can significantly slow down dynamic test generation. For the SAGE implementation, we

found caching and unrelated constraint optimization to be the most important. While weak

and strong combination did in fact reduce the number of calls to the constraint solver, this

was not the bottleneck. Our results for Media 1 demonstrate that active property checking

can find a significant number of bugs not discovered by path exploration alone. At the

same time, the results for Media 2 show that the current SAGE constraints do not fully

capture the execution of some programs. Increasing constraint precision should lead to more

expensive solver calls, therefore making our weak and strong combinations more important.

We have also performed exploratory searches on several other applications, includ-

ing two shipped as part of Office 2007 and two media parsing layers. In one of the Office

applications and media layer, the division by zero checker and the integer overflow checker
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each created test cases leading to previously-unknown division by zero errors. In the other

cases, we also discovered new bugs in test cases created by checkers, but needed to use an

internal tool for runtime passive checking of memory safety violations that is more precise

than AppVerifier. Overall, active property checking, with our optimizations, is an effective

and scalable technique for discovering many serious security-critical bugs.
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Chapter 4

Integer Bugs, Linux Programs, and

Reporting at Scale

4.1 Introduction

Integer overflow bugs recently became the second most common bug type in secu-

rity advisories from OS vendors [23]. Unfortunately, traditional static and dynamic analysis

techniques are poorly suited to detecting integer-related bugs. In this paper, we argue that

dynamic test generation is better suited to finding such bugs, and we develop new meth-

ods for finding a broad class of integer bugs with this approach. We have implemented

these methods in a new tool, SmartFuzz, that analyzes traces from commodity Linux x86

programs.

Integer bugs result from a mismatch between machine arithmetic and mathematical

arithmetic. For example, machine arithmetic has bounded precision; if an expression has a
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value greater than the maximum integer that can be represented, the value wraps around

to fit in machine precision. This can cause the value stored to be smaller than expected by

the programmer. If, for example, a wrapped value is used as an argument to malloc, the

result is an object that is smaller than expected, which can lead to a buffer overflow later

if the programmer is not careful. This kind of bug is often known as an integer overflow

bug. In Section 4.2 we describe two other classes of integer bugs: width conversions, in

which converting from one type of machine integer to another causes unexpected changes

in value, and signed/unsigned conversions, in which a value is treated as both a signed

and an unsigned integer. These kinds of bugs are pervasive and can, in many cases, cause

serious security vulnerabilities. Therefore, eliminating such bugs is important for improving

software security.

While new code can partially or totally avoid integer bugs if it is constructed ap-

propriately [61], it is also important to find and fix bugs in legacy code. Previous approaches

to finding integer bugs in legacy code have focused on static analysis or runtime checks.

Unfortunately, existing static analysis algorithms for finding integer bugs tend to generate

many false positives, because it is difficult to statically reason about integer values with

sufficient precision. Alternatively, one can insert runtime checks into the application to

check for overflow or non-value-preserving width conversions, and raise an exception if they

occur. One problem with this approach is that many overflows are benign and harmless.

Throwing an exception in such cases prevents the application from functioning and thus

causes false positives. Furthermore, occasionally the code intentionally relies upon overflow

semantics; e.g., cryptographic code or fast hash functions. Such code is often falsely flagged
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by static analysis or runtime checks. In summary, both static analysis and runtime checking

tend to suffer from either many false positives or many missed bugs.

In contrast, dynamic test generation, as described in this thesis, is a promising

approach for avoiding these shortcomings. Our main approach is to use symbolic execution

to construct test cases that trigger arithmetic overflows, non-value-preserving width con-

versions, or dangerous signed/unsigned conversions. Then, we run the program on these

test cases and use standard tools that check for buggy behavior to recognize bugs. We only

report test cases that are verified to trigger incorrect behavior by the program. As a result,

we have confidence that all test cases we report are real bugs and not false positives.

Others have previously reported on using dynamic test generation to find some

kinds of security bugs [17]. The contribution of this chapter is to show how to extend those

techniques to find integer-related bugs. We show that this approach is effective at finding

many bugs, without the false positives endemic to prior work on static analysis and runtime

checking.

The ability to eliminate false positives is important, because false positives are

time-consuming to deal with. In slogan form: false positives in static analysis waste the

programmer’s time; false positives in runtime checking waste the end user’s time; while false

positives in dynamic test generation waste the tool’s time. Because an hour of CPU time

is much cheaper than an hour of a human’s time, dynamic test generation is an attractive

way to find and fix integer bugs.

We have implemented our approach to finding integer bugs in SmartFuzz, a tool

for performing symbolic execution and dynamic test generation on Linux x86 applications.
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SmartFuzz works with binary executables directly, and does not require or use access to

source code. Working with binaries has several advantages, most notably that we can

generate tests directly from shipping binaries. In particular, we do not need to modify

the build process for a program under test, which has been a pain point for static analysis

tools [20]. Also, this allows us to perform whole-program analysis: we can find bugs that

arise due to interactions between the application and libraries it uses, even if we don’t have

source code for those libraries. Of course, working with binary traces introduces special

challenges, most notably the sheer size of the traces and the lack of type information that

would be present in the source code. We discuss the challenges and design choices, in

particular how SmartFuzz compares with SAGE, in Section 4.4.

In Section 4.5 we describe the techniques we use to generate test cases for integer

bugs in dynamic test generation. We discovered that these techniques find many bugs, too

many to track manually. To help us prioritize and manage these bug reports and streamline

the process of reporting them to developers, we built Metafuzz, a web service for tracking test

cases and bugs (Section 4.6). Metafuzz helps minimize the amount of human time required

to find high-quality bugs and report them to developers, which is important because human

time is the most expensive resource in a testing framework. Finally, Section 4.7 presents an

empirical evaluation of our techniques and discusses our experience with these tools.

The contributions of this chapter are the following:

• We design novel algorithms for finding signed/unsigned conversion vulnerabilities us-

ing symbolic execution. In particular, we develop a novel type inference approach

that allows us to detect which values in an x86 binary trace are used as signed inte-
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gers, unsigned integers, or both. We discuss challenges in scaling such an analysis to

commodity Linux media playing software and our approach to these challenges.

• We extend the range of integer bugs that can be found with symbolic execution, in-

cluding integer overflows, integer underflows, width conversions, and signed/unsigned

conversions. No prior symbolic execution tool has included the ability to detect all

of these kinds of integer vulnerabilities. We follow up the work in the previous chap-

ter with experiments on a wider range of integer conversion errors than previously

reported.

• We implement these methods in SmartFuzz, a tool for symbolic execution and dynamic

test generation of x86 binaries on Linux. We describe key challenges in symbolic

execution of commodity Linux software, and we explain design choices in SmartFuzz

motivated by these challenges.

• We report on the bug finding performance of SmartFuzz and compare SmartFuzz to

the zzuf black box fuzz testing tool. The zzuf tool is a simple, yet effective, fuzz

testing program which randomly mutates a given seed file to find new test inputs,

without any knowledge or feedback from the target program. We have tested a broad

range of commodity Linux software, including the media players mplayer and ffmpeg,

the ImageMagick convert tool, and the exiv2 TIFF metadata parsing library. This

software comprises over one million lines of source code, and our test cases result in

symbolic execution of traces that are millions of x86 instructions in length.

• We identify challenges with reporting bugs at scale, and introduce several techniques
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for addressing these challenges. For example, we present evidence that a simple stack

hash is not sufficient for grouping test cases to avoid duplicate bug reports, and

then we develop a fuzzy stack hash to solve these problems. Our experiments find

approximately 77 total distinct bugs in 864 compute hours, giving us an average cost

of $2.24 per bug at current Amazon EC2 rates. We quantify the overlap in bugs found

by the two tools, and we show that SmartFuzz finds bugs missed by zzuf, including

one program where SmartFuzz finds bugs but zzuf does not.

Between June 2008 and November 2008, Metafuzz has processed over 2,614 test

runs from both SmartFuzz and the zzuf black box fuzz testing tool [52], comprising

2,361,595 test cases. To our knowledge, this is the largest number of test runs and test

cases yet reported for dynamic test generation techniques. We have released our code un-

der the GPL version 2 and BSD licenses1. Our vision is a service that makes it easy and

inexpensive for software projects to find integer bugs and other serious security relevant

code defects using dynamic test generation techniques. Our work shows that such a service

is possible for a large class of commodity Linux programs.

4.2 Integer Bugs

We now describe the three main classes of integer bugs we want to find: integer

overflow/underflow, width conversions, and signed/unsigned conversion errors [9]. All three

classes of bugs occur due to the mismatch between machine arithmetic and arithmetic over

unbounded integers.

1http://www.sf.net/projects/catchconv
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Overflow/Underflow. Integer overflow (and underflow) bugs occur when an arithmetic

expression results in a value that is larger (or smaller) than can be represented by the

machine type. The usual behavior in this case is to silently “wrap around,” e.g. for a 32-bit

type, reduce the value modulo 232. Consider the function badalloc in Figure 4.1. If the

multiplication sz * n overflows, the allocated buffer may be smaller than expected, which

can lead to a buffer overflow later.

Width Conversions. Converting a value of one integral type to a wider (or narrower)

integral type which has a different range of values can introduce width conversion bugs. For

instance, consider badcpy in Figure 4.1. If the first parameter is negative, the conversion

from Int16 to UInt32 will trigger sign-extension, causing m to be very large and likely

leading to a buffer overflow. Because memcpy’s third argument is declared to have type

size t (which is an unsigned integer type), even if we passed n directly to memcpy the

implicit conversion would still make this buggy. Width conversion bugs can also arise when

converting a wider type to a narrower type.

Signed/Unsigned Conversion. Lastly, converting a signed integer type to an unsigned

integer type of the same width (or vice versa) can introduce bugs, because this conversion

can change a negative number to a large positive number (or vice versa). For example,

consider badcpy2 in Figure 4.1. If the first parameter n is a negative integer, it will pass

the bounds check, then be promoted to a large unsigned integer when passed to memcpy.

memcpy will copy a large number of bytes, likely leading to a buffer overflow.
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char *badalloc(int sz, int n) {

return (char *) malloc(sz * n);

}

void badcpy(Int16 n, char *p, char *q) {

UInt32 m = n;

memcpy(p, q, m);

}

void badcpy2(int n, char *p, char *q) {

if (n > 800)

return;

memcpy(p, q, n);

}

Figure 4.1: Examples of three types of integer bugs.

4.3 Related Work

An earlier version of SmartFuzz and the Metafuzz web site infrastructure described

in this paper were used for previous work that compares dynamic test generation with

black-box fuzz testing by different authors [2]. That previous work does not describe the

SmartFuzz tool, its design choices, or the Metafuzz infrastructure in detail. Furthermore,

this paper works from new data on the effectiveness of SmartFuzz, except for an anecdote

in our “preliminary experiences” section. We are not aware of other work that directly

compares dynamic test generation with black-box fuzz testing on a scale similar to ours.

The most closely related work on integer bugs is Godefroid et al. [42], who describe

dynamic test generation with bug-seeking queries for integer overflow, underflow, and some

narrowing conversion errors in the context of the SAGE tool. Our work looks at a wider

range of narrowing conversion errors, and we consider signed/unsigned conversion while

their work does not. The EXE and KLEE tools also use integer overflow to prioritize



112

different test cases in dynamic test generation, but they do not break out results on the

number of bugs found due to this heuristic [17, 18]. The KLEE system also focuses on

scaling dynamic test generation, but in a different way. While we focus on a few “large”

programs in our results, KLEE focuses on high code coverage for over 450 smaller programs,

as measured by trace size and source lines of code. These previous works also do not address

the problem of type inference for integer types in binary traces.

IntScope is a static binary analysis tool for finding integer overflow bugs [87].

IntScope translates binaries to an intermediate representation, then it checks lazily for po-

tentially harmful integer overflows by using symbolic execution for data that flows into

“taint sinks” defined by the tool, such as memory allocation functions. SmartFuzz, in con-

trast, eagerly attempts to generate new test cases that cause an integer bug at the point in

the program where such behavior could occur. This difference is due in part to the fact that

IntScope reports errors to a programmer directly, while SmartFuzz filters test cases using a

tool such as memcheck. As we argued in the Introduction, such a filter allows us to employ

aggressive heuristics that may generate many test cases. Furthermore, while IntScope ren-

ders signed and unsigned comparisons in their intermediate representation by using hints

from the x86 instruction set, they do not explicitly discuss how to use this information

to perform type inference for signed and unsigned types, nor do they address the issue of

scaling such inference to traces with millions of instructions. Finally, IntScope focuses only

on integer overflow errors, while SmartFuzz covers underflow, narrowing conversion, and

signed/unsigned conversion bugs in addition.

The dynamic test generation approach we use was introduced by Godefroid et
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al. [40] and independently by Cadar and Engler [15]. The SAGE system by Godefroid et

al. works, as we do, on x86 binary programs and uses a generational search, but SAGE

makes several different design choices we explain in Section 4.4. Lanzi et al. propose a

design for dynamic test generation of x86 binaries that uses static analysis of loops to

assist the solver, but their implementation is preliminary [59]. KLEE, in contrast, works

with the intermediate representation generated by the Low-Level Virtual Machine target

for gcc [18]. Larson and Austin applied symbolic range analysis to traces of programs

to look for potential buffer overflow attacks, although they did not attempt to synthesize

crashing inputs [60]. The BitBlaze [12] infrastructure of Song et al. also performs symbolic

execution of x86 binaries, but their focus is on malware and signature generation, not on

test generation.

Other approaches to integer bugs include static analysis and runtime detection.

The Microsoft Prefast tool uses static analysis to warn about intraprocedural integer over-

flows [67]. Both Microsoft Visual C++ and gcc can add runtime checks to catch integer

overflows in arguments to malloc and terminate a program. Brumley et al. provide rules

for such runtime checks and show they can be implemented with low overhead on the x86

architecture by using jumps conditioned on the overflow bit in EFLAGS [11]. Both of these

approaches fail to catch signed/unsigned conversion errors. Furthermore, both static anal-

ysis and runtime checking for overflow will flag code that is correct but relies on overflow

semantics, while our approach only reports test cases in case of a crash or a Valgrind error

report.

Blexim gives an introduction to integer bugs [10]. Fuzz testing has received a
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great deal of attention since its original introduction by Miller et al [68]. Notable public

demonstrations of fuzzing’s ability to find bugs include the Month of Browser Bugs and

Month of Kernel Bugs [71, 64]. DeMott surveys recent work on fuzz testing, including

the autodafe fuzzer, which uses libgdb to instrument functions of interest and adjust fuzz

testing based on those functions’ arguments [30, 86].

Our Metafuzz infrastructure also addresses issues not treated in previous work

on test generation. First, we make bug bucketing a first-class problem and we introduce

a fuzzy stack hash in response to developer feedback on bugs reported by Metafuzz. The

SAGE paper reports bugs by stack hash, and KLEE reports on using the line of code as a

bug bucketing heuristic, but we are not aware of other work that uses a fuzzy stack hash.

Second, we report techniques for reducing the amount of human time required to process

test cases generated by fuzzing and improve the quality of our error reports to developers;

we are not aware of previous work on this topic. Such techniques are vitally important

because human time is the most expensive part of a test infrastructure. Finally, Metafuzz

uses on-demand computing with the Amazon Elastic Compute Cloud, and we explicitly

quantify the cost of each bug found, which was not done in previous work.

4.4 Dynamic Test Generation

We describe the architecture of SmartFuzz, a tool for dynamic test generation of x86 binary

programs on Linux. Dynamic test generation on x86 binaries—without access to source

code—raises special challenges. We discuss these challenges and motivate our fundamental

design choices.
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Figure 4.2: Dynamic test generation includes four stages: symbolic execution, solving to
obtain new test cases, then triage to determine whether to report a bug or score the test
case for addition to the pool of unexplored test cases.

4.4.1 Architecture

The SmartFuzz architecture is as follows: First, we add one or more test cases to

a pool. Each test case in the pool receives a score given by the number of new basic blocks

seen when running the target program on the test case. By “new” we mean that the basic

block has not been observed while scoring any previous test case; we identify basic blocks

by the instruction pointer of their entry point.

In each iteration of test generation, we choose a high-scoring test case, execute the

program on that input, and use symbolic execution to generate a set of constraints that

record how each intermediate value computed by the program relates to the inputs in the

test case. SmartFuzz implements the symbolic execution and scoring components using the

Valgrind binary analysis framework, and we use STP [36] to solve constraints.

For each symbolic branch, SmartFuzz adds a constraint that tries to force the

program down a different path. We then query the constraint solver to see whether there

exists any solution to the resulting set of constraints; if there is, the solution describes a

new test case. We refer to these as coverage queries to the constraint solver.

SmartFuzz also injects constraints that are satisfied if a condition causing an error

or potential error is satisfied (e.g., to force an arithmetic calculation to overflow). We then
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query the constraint solver; a solution describes a test case likely to cause an error. We

refer to these as bug-seeking queries to the constraint solver. Bug-seeking queries come in

different types, depending on the specific error they seek to exhibit in the program.

Both coverage and bug-seeking queries are explored in a generational search similar

to the SAGE tool [43]. Each query from a symbolic trace is solved in turn, and new test

cases created from successfully solved queries. A single symbolic execution therefore leads

to many coverage and bug-seeking queries to the constraint solver, which may result in

many new test cases.

We triage each new test case as it is generated, i.e. we determine if it exhibits a

bug. If so, we report the bug; otherwise, we add the test case to the pool for scoring and

possible symbolic execution. For triage, we use Valgrind memcheck on the target program

with each test case, which is a tool that observes concrete execution looking for common

programming errors [82]. We record any test case that causes the program to crash or

triggers a memcheck warning.

We chose memcheck because it checks a variety of properties, including reads and

writes to invalid memory locations, memory leaks, and use of uninitialized values. Re-

implementing these analyses as part of the SmartFuzz symbolic execution tool would be

wasteful and error-prone, as the memcheck tool has had the benefit of multiple years of use

in large-scale projects such as Firefox and OpenOffice. The memcheck tool is known as a

tool with a low false positive rate, as well, making it more likely that developers will pay

attention to bugs reported by memcheck. Given a memcheck error report, developers do not

even need to know that associated test case was created by SmartFuzz.
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We do not attempt to classify the bugs we find as exploitable or not exploitable,

because doing so by hand for the volume of test cases we generate is impractical. Many

of the bugs found by memcheck are memory safety errors, which often lead to security

vulnerabilities. Writes to invalid memory locations, in particular, are a red flag. Finally, to

report bugs we use the Metafuzz framework described in Section 4.6.

4.4.2 Design Choices

Intermediate Representation. The sheer size and complexity of the x86 instruction

set poses a challenge for analyzing x86 binaries. We decided to translate the underlying

x86 code on-the-fly to an intermediate representation, then map the intermediate repre-

sentation to symbolic formulas. Specifically, we used the Valgrind binary instrumentation

tool to translate x86 instructions into VEX, the Valgrind intermediate representation [74].

The BitBlaze system works similarly, but with a different intermediate representation [12].

Details are available in an extended version of this paper2.

Using an intermediate representation offers several advantages. First, it allows for

a degree of platform independence: though we support only x86 in our current tool, the

VEX library also supports the AMD64 and PowerPC instruction sets, with ARM support

under active development. Adding support for these additional architectures requires only

adding support for a small number of additional VEX instructions, not an entirely new

instruction set from scratch. Second, the VEX library generates IR that satisfies the single

static assignment property and performs other optimizations, which makes the translation

from IR to formulas more straightforward. Third, and most importantly, this choice allowed

2http://www.dmolnar.com/metafuzz-full.pdf
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us to outsource the pain of dealing with the minutae of the x86 instruction set to the VEX

library, which has had years of production use as part of the Valgrind memory checking

tool. For instance, we don’t need to explicitly model the EFLAGS register, as the VEX

library translates it to boolean operations. The main shortcoming with the VEX IR is that

a single x86 instruction may expand to five or more IR instructions, which results in long

traces and correspondingly longer symbolic formulas.

Online Constraint Generation. SmartFuzz uses online constraint generation, in which

constraints are generated while the program is running. In contrast, SAGE (another tool for

dynamic test generation) uses offline constraint generation, where the program is first traced

and then the trace is replayed to generate constraints [43]. Offline constraint generation

has several advantages: it is not sensitive to concurrency or nondeterminism in system

calls; tracing has lower runtime overhead than constraint generation, so can be applied

to running systems in a realistic environment; and, this separation of concerns makes the

system easier to develop and debug, not least because trace replay and constraint generation

is reproducible and deterministic. The main downside of offline constraint generation is that

the tracing must record a large amount of information to avoid sensitivity to concurrency

during re-execution; the iDNA framework used by SAGE logs all system call results and

many reads and writes from memory, then attempts to compress this data by using different

checkpoints of system state to allow for compact representation of what would otherwise

be a prohibitively large instruction trace [7]. In short, offline constraint generation has

important software engineering advantages.

SmartFuzz uses online constraint generation primarily because, when the Smart-
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Fuzz project began, we were not aware of an available offline trace-and-replay framework

with an intermediate representation comparable to VEX. Today, O’Callahan’s chronicle-recorder

could provide a starting point for a VEX-based offline constraint generation tool [76].

On the other hand, offline constraint generation can be limited if the tracing infras-

tructure does not record information that would be useful later for generating constraints.

For example, to save space, some tracing infrastructures, including iDNA in its default

setting, do not record the contents of memory unless the memory is read during that execu-

tion. This loses information that could be used for modeling symbolic pointer dereferences,

because a symbolic pointer may point to memory that was not read during the execution

but is fixed (e.g. indexing into a table of values).

Memory Model. Other symbolic execution tools such as EXE and KLEE model memory

as a set of symbolic arrays, with one array for each allocated memory object. We do

not. Instead, for each load or store instruction, we first concretize the memory address

before accessing the symbolic heap. In particular, we keep a map M from concrete memory

addresses to symbolic values. If the program reads from concrete address a, we retrieve a

symbolic value from M(a). Even if we have recorded a symbolic expression a associated

with this address, the symbolic address is ignored. Note that the value of a is known

at constraint generation time and hence becomes (as far as the solver is concerned) a

constant. Store instructions are handled similarly. Similarly, each store instruction updates

this map by examining the concrete address that the program is writing to and updating

the corresponding portion of the map.

While this approach sacrifices precision, it scales better to large traces. We note
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that the SAGE tool adopts a similar memory model. In particular, concretizing addresses

generates symbolic formulas that the constraint solver can solve much more efficiently,

because the solver does not need to reason about aliasing of pointers.

Only Tainted Data is Symbolic. We track the taint status of every byte in memory.

As an optimization, we do not store symbolic information for untainted memory locations,

because by definition untainted data is not dependent upon the untrusted inputs that we

are trying to vary. We have found that only a tiny fraction of the data processed along a

single execution path is tainted. Consequently, this optimization greatly reduces the size of

our constraint systems and reduces the memory overhead of symbolic execution.

Focus on Fuzzing Files. We decided to focus on single-threaded programs, such as

media players, that read a file containing untrusted data. Thus, a test case is simply the

contents of this file, and SmartFuzz can focus on generating candidate files. This simplifies

the symbolic execution and test case generation infrastructure, because there are a limited

number of system calls that read from this file, and we do not need to account for concurrent

interactions between threads in the same program. We know of no fundamental barriers,

however, to extending our approach to multi-threaded and network-facing programs.

Our implementation associates a symbolic input variable with each byte of the

input file. As a result, SmartFuzz cannot generate test cases with more bytes than are

present in the initial seed file.

Multiple Cooperating Analyses. Our tool is implemented as a series of independent

cooperating analyses in the Valgrind instrumentation framework. Each analysis adds its

own instrumentation to a basic block during translation and exports an interface to the
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other analyses. For example, the instrumentation for tracking taint flow, which determines

the IR instructions to treat as symbolic, exports an interface that allows querying whether a

specific memory location or temporary variable is symbolic. A second analysis then uses this

interface to determine whether or not to output STP constraints for a given IR instruction.

The main advantage of this approach is that it makes it easy to add new features by

adding a new analysis, then modifying our core constraint generation instrumentation. Also,

this decomposition enabled us to extract our taint-tracking code and use it in a different

project with minimal modifications, and we were able to implement the binary type inference

analysis described in Section 4.5, replacing a different earlier version, without changing our

other analyses.

Optimize in Postprocessing. Another design choice was to output constraints that are as

“close” as possible to the intermediate representation, performing only limited optimizations

on the fly. For example, we implement the “related constraint elimination,” as introduced

by tools such as EXE and SAGE [17, 43], as a post-processing step on constraints created by

our tool. We then leave it up to the solver to perform common subexpression elimination,

constant propagation, and other optimizations. The main benefit of this choice is that it

simplifies our constraint generation. One drawback of this choice is that current solvers,

including STP, are not yet capable of “remembering” optimizations from one query to the

next, leading to redundant work on the part of the solver. The main drawback of this

choice, however, is that while after optimization each individual query is small, the total

symbolic trace containing all queries for a program can be several gigabytes. When running

our tool on a 32-bit host machine, this can cause problems with maximum file size for a
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single file or maximum memory size in a single process.

4.5 Techniques for Finding Integer Bugs

We now describe the techniques we use for finding integer bugs.

Overflow/Underflow. For each arithmetic expression that could potentially overflow or

underflow, we emit a constraint that is satisfied if the overflow or underflow occurs. If our

solver can satisfy these constraints, the resulting input values will likely cause an underflow

or overflow, potentially leading to unexpected behavior.

Width Conversions. For each conversion between integer types, we check whether it

is possible for the source value to be outside the range of the target value by adding a

constraint that’s satisfied when this is the case and then applying the constraint solver.

For conversions that may sign-extend, we use the constraint solver to search for a test case

where the high bit of the source value is non-zero.

Signed/Unsigned Conversions. Our basic approach is to try to reconstruct, from the

x86 instructions executed, signed/unsigned type information about all integral values. This

information is present in the source code but not in the binary, so we describe an algorithm

to infer this information automatically.

Consider four types for integer values: “Top,” “Signed,” “Unsigned,” or “Bottom.”

Here, “Top” means the value has not been observed in the context of a signed or unsigned

integer; “Signed” means that the value has been used as a signed integer; “Unsigned” means

the value has been used as an unsigned integer; and “Bottom” means that the value has

been used inconsistently as both a signed and unsigned integer. These types form a four-
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int main(int argc, char** argv) {

char * p = malloc(800);

char * q = malloc(800);

int n;

n = atol(argv[1]);

if (n > 800)

return;

memcpy(p, q, n);

return 0;

}

Figure 4.3: A simple test case for dynamic type inference and query generation. The signed
comparison n > 800 and unsigned size t argument to memcpy assign the type “Bottom” to
the value associated with n. When we solve for an input that makes n negative, we obtain
a test case that reveals the error.

point lattice. Our goal is to find symbolic program values that have type “Bottom.” These

values are candidates for signed/unsigned conversion errors. We then attempt to synthesize

an input that forces these values to be negative.

We associate every instance of every temporary variable in the Valgrind intermedi-

ate representation with a type. Every variable in the program starts with type Top. During

execution we add type constraints to the type of each value. For x86 binaries, the sources of

type constraints are signed and unsigned comparison operators: e.g., a signed comparison

between two values causes both values to receive the “Signed” type constraint. We also

add unsigned type constraints to values used as the length argument of memcpy function,

which we can detect because we know the calling convention for x86 and we have debugging

symbols for glibc. While the x86 instruction set has additional operations, such as IMUL

that reveal type information about their operands, we do not consider these; this means

only that we may incorrectly under-constrain the types of some values.

Any value that has received both a signed and unsigned type constraint receives
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the type Bottom. After adding a type constraint, we check to see if the type of a value has

moved to Bottom. If so, we attempt to solve for an input which makes the value negative.

We do this because negative values behave differently in signed and unsigned comparisons,

and so they are likely to exhibit an error if one exists. All of this information is present in

the trace without requiring access to the original program source code.

We discovered, however, that gcc 4.1.2 inlines some calls to memcpy by trans-

forming them to rep movsb instructions, even when the -O flag is not present. Furthermore,

the Valgrind IR generated for the rep movsb instruction compares a decrementing counter

variable to zero, instead of counting up and executing an unsigned comparison to the loop

bound. As a result, on gcc 4.1.2 a call to memcpy does not cause its length argument to

be marked as unsigned. To deal with this problem, we implemented a simple heuristic to

detect the IR generated for rep movsb and emit the appropriate constraint. We verified

that this heuristic works on a small test case similar to Figure 4.3, generating a test input

that caused a segmentation fault.

A key problem is storing all of the information required to carry out type in-

ference without exhausting available memory. Because a trace may have several million

instructions, memory usage is key to scaling type inference to long traces. Furthermore,

our algorithm requires us to keep track of the types of all values in the program, unlike

constraint generation, which need concern itself only with tainted values. An earlier version

of our analysis created a special “type variable” for each value, then maintained a map

from IR locations to type variables. Each type variable then mapped to a type. We found

that in addition to being hard to maintain, this analysis often led to a number of live type
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variables that scaled linearly with the number of executed IR instructions. The result was

that our analysis ran out of memory when attempting to play media files in the mplayer

media player.

To solve this problem, we developed a garbage-collected data structure for tracking

type information. To reduce memory consumption, we use a union-find data structure to

partition integer values into equivalence classes where all values in an equivalence class are

required to have the same type. We maintain one type for each union-find equivalence class;

in our implementation type information is associated with the representative node for that

equivalence class. Assignments force the source and target values to have the same types,

which is implemented by merging their equivalence classes. Updating the type for a value

can be done by updating its representative node’s type, with no need to explicitly update

the types of all other variables in the equivalence class.

It turns out that this data structure is acyclic, due to the fact that VEX IR is in

SSA form. Therefore, we use reference counting to garbage collect these nodes. In addition,

we benefit from an additional property of the VEX IR: all values are either stored in memory,

in registers, or in a temporary variable, and the lifetime of each temporary variable is

implicitly limited to that of a single basic block. Therefore, we maintain a list of temporaries

that are live in the current basic block; when we leave the basic block, the type information

associated with all of those live temporaries can be deallocated. Consequently, the amount

of memory needed for type inference at any point is proportional to the number of tainted

(symbolic) variables that are live at that point—which is a significant improvement over

the naive approach to type inference. The Appendix contains a more detailed specification
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of these algorithms.

4.6 Triage and Reporting at Scale

Both SmartFuzz and zzuf can produce hundreds to thousands of test cases for

a single test run. We designed and built a web service, Metafuzz, to manage the volume

of tests. We describe some problems we found while building Metafuzz and techniques to

overcoming these problems. Finally, we describe the user experience with Metafuzz and

bug reporting.

4.6.1 Problems and Techniques

The Metafuzz architecture is as follows: first, a Test Machine generates new test

cases for a program and runs them locally. The Test Machine then determines which test

cases exhibit bugs and sends these test cases to Metafuzz. The Metafuzz web site displays

these test cases to the User, along with information about what kind of bug was found

in which target program. The User can pick test cases of interest and download them

for further investigation. We now describe some of the problems we faced when designing

Metafuzz, and our techniques for handling them. Section 4.7 reports our experiences with

using Metafuzz to manage test cases and report bugs.

Problem: Each test run generated many test cases, too many to examine by hand.

Technique: We used Valgrind’s memcheck to automate the process of checking whether a

particular test case causes the program to misbehave. Memcheck looks for memory leaks,

use of uninitialized values, and memory safety errors such as writes to memory that was not



127

allocated [82]. If memcheck reports an error, we save the test case. In addition, we looked

for core dumps and non-zero program exit codes.

Problem: Even after filtering out the test cases that caused no errors, there were still

many test cases that do cause errors.

Technique: The metafuzz.com front page is a HTML page listing all of the potential bug

reports. showing all potential bug reports. Each test machine uploads information about

test cases that trigger bugs to Metafuzz.

Problem: The machines used for testing had no long-term storage. Some of the test cases

were too big to attach in e-mail or Bugzilla, making it difficult to share them with devel-

opers.

Technique: Test cases are uploaded directly to Metafuzz, providing each one with a stable

URL. Each test case also includes the Valgrind output showing the Valgrind error, as well

as the output of the program to stdout and stderr.

Problem: Some target projects change quickly. For example, we saw as many as four up-

dates per day to the mplayer source code repository. Developers reject bug reports against

“out of date” versions of the software.

Technique: We use the Amazon Elastic Compute Cloud (EC2) to automatically attempt

to reproduce the bug against the latest version of the target software. A button on the

Metafuzz site spawns an Amazon EC2 instance that checks out the most recent version of

the target software, builds it, and then attempts to reproduce the bug.

Problem: Software projects have specific reporting requirements that are tedious to im-

plement by hand. For example, mplayer developers ask for a stack backtrace, disassembly,
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and register dump at the point of a crash.

Technique: Metafuzz automatically generates bug reports in the proper format from the

failing test case. We added a button to the Metafuzz web site so that we can review the

resulting bug report and then send it to the target software’s bug tracker with a single click.

Problem: The same bug often manifests itself as many failing test cases. Reporting the

same bug to developers many times wastes developer time.

Technique: We use the call stack to identify multiple instances of the same bug. Valgrind

memcheck reports the call stack at each error site, as a sequence of instruction pointers. If

debugging information is present, it also reports the associated filename and line number

information in the source code.

Initially, we computed a stack hash as a hash of the sequence of instruction pointers

in the backtrace. This has the benefit of not requiring debug information or symbols.

Unfortunately, we found that a naive stack hash has several problems. First, it is sensitive

to address space layout randomization (ASLR), because different runs of the same program

may load the stack or dynamically linked libraries at different addresses, leading to different

hash values for call stacks that are semantically the same. Second, even without ASLR, we

found several cases where a single bug might be triggered at multiple call stacks that were

similar but not identical. For example, a buggy function can be called in several different

places in the code. Each call site then yields a different stack hash. Third, any slight

change to the target software can change instruction pointers and thus cause the same bug

to receive a different stack hash. While we do use the stack hash on the client to avoid

uploading test cases for bugs that have been previously found, we found that we could not
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use stack hashes alone to determine if a bug report is novel or not.

To address these shortcomings, we developed a fuzzy stack hash that is forgiving

of slight changes to the call stack. We use debug symbol information to identify the name

of the function called, the line number in source code (excluding the last digit of the line

number, to allow for slight changes in the code), and the name of the object file for each

frame in the call stack. We then hash all of this information for the three functions at the

top of the call stack.

The choice of the number of functions to hash determines the “fuzzyness” of the

hash. At one extreme, we could hash all extant functions on the call stack. This would

be similar to the classic stack hash and report many semantically same bugs in different

buckets. On the other extreme, we could hash only the most recently called function. This

fails in cases where two semantically different bugs both exhibit as a result of calling memcpy

or some other utility function with bogus arguments. In this case, both call stacks would

end with memcpy even though the bug is in the way the arguments are computed. We chose

three functions as a trade-off between these extremes; we found this sufficient to stop further

reports from the mplayer developers of duplicates in our initial experiences. Finding the

best fuzzy stack hash is interesting future work; we note that the choice of bug bucketing

technique may depend on the program under test.

While any fuzzy stack hash, including ours, may accidentally lump together two

distinct bugs, we believe this is less serious than reporting duplicate bugs to developers.

We added a post-processing step on the server that computes the fuzzy stack hash for test

cases that have been uploaded to Metafuzz and uses it to coalesce duplicates into a single
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bug bucket.

Problem: Because Valgrind memcheck does not terminate the program after seeing an

error, a single test case may give rise to dozens of Valgrind error reports. Two different test

cases may share some Valgrind errors but not others.

Technique: First, we put a link on the Metafuzz site to a single test case for each bug

bucket. Therefore, if two test cases share some Valgrind errors, we only use one test case

for each of the errors in common. Second, when reporting bugs to developers, we highlight

in the title the specific bugs on which to focus.

4.7 Results

4.7.1 Preliminary Experience

We used an earlier version of SmartFuzz and Metafuzz in a project carried out by

a group of undergraduate students over the course of eight weeks in Summer 2008. When

beginning the project, none of the students had any training in security or bug reporting.

We provided a one-week course in software security. We introduced SmartFuzz, zzuf,

and Metafuzz, then asked the students to generate test cases and report bugs to software

developers. By the end of the eight weeks, the students generated over 1.2 million test cases,

from which they reported over 90 bugs to software developers, principally to the mplayer

project, of which 14 were fixed. For further details, we refer to their presentation [2].
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SLOC seedfile type and size Branches x86 instrs IRStmts asserts queries

mplayer 723468 MP3 (159000 bytes) 20647045 159500373 810829992 1960 36

ffmpeg 304990 AVI (980002 bytes) 4147710 19539096 115036155 4778690 462346

exiv2 57080 JPG (22844 bytes) 809806 6185985 32460806 81450 1006

gzip 140036 TAR.GZ (14763 bytes) 24782 161118 880386 95960 13309

bzip 26095 TAR.BZ2 (618620 bytes) 107396936 746219573 4185066021 1787053 314914

ImageMagick 300896 PNG (25385 bytes) 98993374 478474232 2802603384 583 81

Figure 4.4: The size of our test programs. We report the source lines of code for each test
program and the size of one of our seed files, as measured by David A. Wheeler’s sloccount.
Then we run the test program on that seed file and report the total number of branches, x86
instructions, Valgrind IR statements, STP assert statements, and STP query statements
for that run. We ran symbolic execution for a maximum of 12 hours, which was sufficient
for all programs except mplayer, which terminated during symbolic execution.

4.7.2 Experiment Setup

Test Programs. Our target programs were mplayer version SVN-r28403-4.1.2, ffmpeg

version SVN-r16903, exiv2 version SVN-r1735, gzip version 1.3.12, bzip2 version 1.0.5, and

ImageMagick convert version 6.4.8− 10, which are all widely used media and compression

programs. Table 4.4 shows information on the size of each test program. Our test programs

are large, both in terms of source lines of code and trace lengths. The percentage of the

trace that is symbolic, however, is small.

Test Platform. Our experiments were run on the Amazon Elastic Compute Cloud (EC2),

employing a “small” and a “large” instance image with SmartFuzz, zzuf, and all our test

programs pre-installed. At this writing, an EC2 small instance has 1.7 GB of RAM and a

single-core virtual CPU with performance roughly equivalent to a 1GHz 2007 Intel Xeon.

An EC2 large instance has 7 GB of RAM and a dual-core virtual CPU, with each core
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mplayer ffmpeg exiv2 gzip bzip2 convert

Coverage 2599 14535 1629 5906 12606 388

ConversionNot32 0 3787 0 0 0 0

Conversion32to8 1 26 740 2 10 116

Conversion32to16 0 16004 0 0 0 0

Conversion16Sto32 0 121 0 0 0 0

SignedOverflow 1544 37803 5941 24825 9109 49

SignedUnderflow 3 4003 48 1647 2840 0

UnsignedOverflow 1544 36945 4957 24825 9104 35

UnsignedUnderflow 0 0 0 0 0 0

MallocArg 0 24 0 0 0 0

SignedUnsigned 2568 21064 799 7883 17065 49

Figure 4.5: The number of each query type for each test program after a single 24-hour run.

having performance roughly equivalent to a 1 GHz Xeon.

We ran all mplayer runs and ffmpeg runs on EC2 large instances, and we ran all

other test runs with EC2 small instances. We spot-checked each run to ensure that instances

successfully held all working data in memory during symbolic execution and triage without

swapping to disk, which would incur a significant performance penalty. For each target

program we ran SmartFuzz and zzuf with three seed files, for 24 hours per program per

seed file. Our experiments took 288 large machine-hours and 576 small machine-hours,

which at current EC2 prices of $0.10 per hour for small instances and $0.40 per hour for

large instances cost $172.80.

Query Types. SmartFuzz queries our solver with the following types of queries: Coverage,

ConversionNot32, Conversion32to8, Conversion32to16, SignedOverflow, UnsignedOverflow,
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SignedUnderflow, UnsignedUnderflow, MallocArg, and SignedUnsigned. Coverage queries

refer to queries created as part of the generational search by flipping path conditions. The

others are bug-seeking queries that attempt to synthesize inputs leading to specific kinds of

bugs. Here MallocArg refers to a set of bug-seeking queries that attempt to force inputs

to known memory allocation functions to be negative, yielding an implicit conversion to a

large unsigned integer, or force the input to be small.

Experience Reporting to Developers. Our original strategy was to report all distinct

bugs to developers and let them judge which ones to fix. The mplayer developers gave

us feedback on this strategy. They wanted to focus on fixing the most serious bugs, so

they preferred seeing reports only for out-of-bounds writes and double free errors. In con-

trast, they were not as interested in out-of-bound reads, even if the resulting read caused a

segmentation fault. This helped us prioritize bugs for reporting.

4.7.3 Bug Statistics

Integer Bug-Seeking Queries Yield Bugs. Figure 4.6 reports the number of each type

of query to the constraint solver over all test runs. For each type of query, we report the

number of test files generated and the number of distinct bugs, as measured by our fuzzy

stack hash. Some bugs may be revealed by multiple different kinds of queries, so there may

be overlap between the bug counts in two different rows of Figure 4.6.

The table shows that our dynamic test generation methods for integer bugs succeed

in finding bugs in our test programs. Furthermore, the queries for signed/unsigned bugs

found the most distinct bugs out of all bug-seeking queries. This shows that our novel

method for detecting signed/unsigned bugs (Section 4.5) is effective at finding bugs.
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Queries Test Cases Bugs

Coverage 588068 31121 19

ConversionNot32 4586 0 0

Conversion32to8 1915 1377 3

Conversion32to16 16073 67 4

Conversion16Sto32 206 0 0

SignedOverflow 167110 0 0

SignedUnderflow 20198 21 3

UnsignedOverflow 164155 9280 3

MallocArg 30 0 0

SignedUnsigned 125509 6949 5

Figure 4.6: The number of bugs found, by query type, over all test runs. The fourth column
shows the number of distinct bugs found from test cases produced by the given type of query,
as classified using our fuzzy stack hash.

SmartFuzz Finds More Bugs Than zzuf, on mplayer. For mplayer, SmartFuzz gener-

ated 10,661 test cases over all test runs, while zzuf generated 11,297 test cases; SmartFuzz

found 22 bugs while zzuf found 13. Therefore, in terms of number of bugs, SmartFuzz

outperformed zzuf for testing mplayer. Another surprising result here is that SmartFuzz

generated nearly as many test cases as zzuf, despite the additional overhead for symbolic

execution and constraint solving. This shows the effect of the generational search and the

choice of memory model; we leverage a single expensive symbolic execution and fast solver

queries to generate many test cases. At the same time, we note that zzuf found a serious

InvalidWrite bug, while SmartFuzz did not.

A previous version of our infrastructure had problems with test cases that caused

the target program to run forever, causing the search to stall. Therefore, we introduced
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a timeout, so that after 300 CPU seconds, the target program is killed. We manually

examined the output of memcheck from all killed programs to determine whether such test

cases represent errors. For gzip we discovered that SmartFuzz created six such test cases,

which account for the two out-of-bounds read (InvalidRead) errors we report; zzuf did not

find any hanging test cases for gzip. We found no other hanging test cases in our other

test runs.

Different Bugs Found by SmartFuzz and zzuf. We ran the same target programs with

the same seed files using zzuf. Figure 4.7 shows bugs found by each type of fuzzer. With

respect to each tool, SmartFuzz found 37 total distinct bugs and zzuf found 59 distinct

bugs. We found some overlap between bugs as well: 19 bugs were found by both fuzz testing

tools, for a total of 77 distinct bugs.

This shows that while there is overlap between the two tools, SmartFuzz finds

bugs that zzuf does not and vice versa. Therefore, it makes sense to try both tools when

testing software.

Note that we did not find any bugs for bzip2 with either fuzzer, so neither tool

was effective on this program. This shows that fuzzing is not always effective at finding

bugs, especially with a program that has already seen attention for security vulnerabilities.

We also note that SmartFuzz found InvalidRead errors in gzip while zzuf found no bugs in

this program. Therefore gzip is a case where SmartFuzz’s directed testing is able to trigger

a bug, but purely random testing is not.

Different zzuf Bugs In Repeated Runs. We then re-ran our 24 hour experiments with

zzuf to determine whether the number of bugs found changed. Table 4.8 shows that the
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mplayer ffmpeg exiv2 gzip convert

SyscallParam 4 3 2 3 0 0 0 0 0 0

UninitCondition 13 1 1 8 0 0 0 0 3 8

UninitValue 0 3 0 3 0 0 0 0 0 2

Overlap 0 0 0 1 0 0 0 0 0 0

Leak DefinitelyLost 2 2 2 4 0 0 0 0 0 0

Leak PossiblyLost 2 1 0 2 0 1 0 0 0 0

InvalidRead 1 2 0 4 4 6 2 0 1 1

InvalidWrite 0 1 0 3 0 0 0 0 0 0

Total 22 13 5 28 4 7 2 0 4 11

Cost per bug $1.30 $2.16 $5.76 $1.03 $1.80 $1.03 $3.60 NA $1.20 $0.65

Figure 4.7: The number of bugs, after fuzzy stack hashing, found by SmartFuzz (the number
on the left in each column) and zzuf (the number on the right). We also report the cost
per bug, assuming $0.10 per small compute-hour, $0.40 per large compute-hour, and 3 runs
of 24 hours each per target for each tool.

mplayer ffmpeg exiv2 gzip convert

SyscallParam 1 3 0 3 0 0 0 0 1 0

UninitCondition 0 1 1 8 0 0 0 0 0 8

UninitValue 6 3 1 3 0 0 0 0 0 2

Overlap 0 0 0 1 0 0 0 0 0 0

Leak DefinitelyLost 2 2 1 4 0 0 1 0 1 0

Leak PossiblyLost 0 1 0 2 0 1 0 0 0 0

InvalidRead 4 2 0 4 0 6 0 0 0 1

InvalidWrite 0 1 0 3 0 0 0 0 0 0

Total 13 13 3 28 0 7 1 0 2 11

Figure 4.8: The number of bugs found by zzuf on two different sets of 24 hour experiments
with three seed files. The number on the right in each column is the number of bug buckets
found in the first set of experiments of each type. The number on the left is the number of
bug buckets of each type found in the second set.
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number of bugs found changed substantially from one run to the next. This shows that

the random choices made by zzuf have a substantial impact on the specific bugs found,

even when testing the same program. We note that in our second round of experiments,

zzuf was able to successfully find a bug in gzip, a memory leak, while the first round of

experiments with zzuf found no bugs in gzip.

Block Coverage. We measured the number of basic blocks in the program visited by the

execution of the seed file, then measured how many new basic blocks were visited during

the test run. We discovered zzuf added a higher percentage of new blocks than SmartFuzz

in 13 of the test runs, while SmartFuzz added a higher percentage of new blocks in 4 of the

test runs (the SmartFuzz convert-2 test run terminated prematurely.) Table 4.9 shows the

initial basic blocks, the number of blocks added, and the percentage added for each fuzzer.

We see that the effectiveness of SmartFuzz varies by program; for convert it is particularly

effective, finding many more new basic blocks than zzuf.

Contrasting SmartFuzz and zzuf Performance. Despite the limitations of random

testing, the blackbox fuzz testing tool zzuf found bugs in four out of our six test programs.

In three of our test programs, zzuf found more bugs than SmartFuzz. Furthermore, zzuf

found the most serious InvalidWrite errors, while SmartFuzz did not. These results seem

surprising, because SmartFuzz exercises directed testing based on program behavior while

zzuf is a purely blackbox tool. We would expect that SmartFuzz should find all the bugs

found by zzuf, given an unbounded amount of time to run both test generation methods.

In practice, however, the time which we run the methods is limited, and so the

question is which bugs are discovered first by each method. We have identified possible
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reasons for this behavior, based on examining the test cases and Valgrind errors generated

by both tools3. We now list and briefly explain these reasons.

Header parsing errors. The errors we observed are often in code that parses the header

of a file format. For example, we noticed bugs in functions of mplayer that parse MP3

headers. These errors can be triggered by simply placing “wrong” values in data fields of

header files. As a result, these errors do not require complicated and unlikely predicates to

be true before reaching buggy code, and so the errors can be reached without needing the

full power of dynamic test generation. Similarly, code coverage may be affected by the style

of program used for testing.

Difference in number of bytes changed. The two different methods change a vastly different

number of bytes from the original seed file to create each new test case. SmartFuzz changes

exactly those bytes that must change to force program execution down a single new path

or to violate a single property. Below we show that in our programs there are only a small

number of constraints on the input to solve, so a SmartFuzz test case differs from its seed

file by only a small number of bytes. In contrast, zzuf changes a fixed fraction of the input

bytes to random other bytes; in our experiments, we left this at the default value of 0.004.

The large number of changes in a single fuzzed test case means that for header

parsing or other code that looks at small chunks of the file independently, a single zzuf test

case will exercise many different code paths with fuzzed chunks of the input file. Each path

which originates from parsing a fuzzed chunk of the input file is a potential bug. Further-

more, because Valgrind memcheck does not necessarily terminate the program’s execution

3We have placed representative test cases from each method at http://www.metafuzz.com/

example-testcases.tgz
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when a memory safety error occurs, one such file may yield multiple bugs and corresponding

bug buckets.

In contrast, the SmartFuzz test cases usually change only one chunk and so explore

only one “fuzzed” path through such code. Our code coverage metric, unfortunately, is not

precise enough to capture this difference because we measured block coverage instead of

path coverage. This means once a set of code blocks has been covered, a testing method

receives no further credit for additional paths through those same code blocks.

Small number of generations reached by SmartFuzz. Our 24 hour experiments with Smart-

Fuzz tended to reach a small number of generations. While previous work on whitebox fuzz

testing shows that most bugs are found in the early generations [43], this feeds into the

previous issue because the number of differences between the fuzzed file and the original

file is proportional to the generation number of the file. We are exploring longer-running

SmartFuzz experiments of a week or more to address this issue.

Loop behavior in SmartFuzz. Finally, SmartFuzz deals with loops by looking at the unrolled

loop in the dynamic program trace, then attempting to generate test cases for each symbolic

if statement in the unrolled loop. This strategy is not likely to create new test cases that

cause the loop to execute for vastly more iterations than seen in the trace. By contrast, the

zzuf case may get lucky by assigning a random and large value to a byte sequence in the

file that controls the loop behavior. On the other hand, when we looked at the gzip bug

found by SmartFuzz and not by zzuf, we discovered that it appears to be due to an infinite

loop in the inflate dynamic routine of gzip.
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Initial basic blocks Blocks added by tests Ratio of prior two columns

Test run SmartFuzz zzuf SmartFuzz zzuf SmartFuzz zzuf

mplayer-1 7819 7823 5509 326 70% 4%

mplayer-2 11375 11376 908 1395 7% 12%

mplayer-3 11093 11096 102 2472 0.9% 22%

ffmpeg-1 6470 6470 592 20036 9.14% 310%

ffmpeg-2 6427 6427 677 2210 10.53% 34.3%

ffmpeg-3 6112 611 97 538 1.58% 8.8%

convert-1 8028 8246 2187 20 27% 0.24%

convert-2 8040 8258 2392 6 29% 0.073%

convert-3 NA 10715 NA 1846 NA 17.2%

exiv2-1 9819 9816 2934 3560 29.9% 36.3%

exiv2-2 9811 9807 2783 3345 28.3% 34.1%

exiv2-3 9814 9810 2816 3561 28.7% 36.3%

gzip-1 2088 2088 252 334 12% 16%

gzip-2 2169 2169 259 275 11.9% 12.7%

gzip-3 2124 2124 266 316 12% 15%

bzip2-1 2779 2778 123 209 4.4% 7.5%

bzip2-2 2777 2778 125 237 4.5% 8.5%

bzip2-3 2823 2822 115 114 4.1% 4.0%

Figure 4.9: Coverage metrics: the initial number of basic blocks, before testing; the number
of blocks added during testing; and the percentage of blocks added.
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4.7.4 SmartFuzz Statistics

Integer Bug Queries Vary By Program. Table 4.5 shows the number of solver queries

of each type for one of our 24-hour test runs. We see that the type of queries varies from

one program to another. We also see that for bzip2 and mplayer, queries generated by

type inference for signed/unsigned errors account for a large fraction of all queries to the

constraint solver. This results from our choice to eagerly generate new test cases early in the

program; because there are many potential integer bugs in these two programs, our symbolic

traces have many integer bug-seeking queries. Our design choice of using an independent

tool such as memcheck to filter the resulting test cases means we can tolerate such a large

number of queries because they require little human oversight.

Time Spent In Each Task Varies By Program. Figure 4.10 shows the percentage

of time spent in symbolic execution, coverage, triage, and recording for each run of our

experiment. We also report an “Other” category, which includes the time spent in the

constraint solver. This shows us where we can obtain gains through further optimization.

The amount of time spent in each task depends greatly on the seed file, as well as on the

target program. For example, the first run of mplayer, which used a mp3 seedfile, spent

98.57% of total time in symbolic execution, and only 0.33% in coverage, and 0.72% in triage.

In contrast, the second run of mplayer, which used a mp4 seedfile, spent only 14.77% of

time in symbolic execution, but 10.23% of time in coverage, and 40.82% in triage. We see

that the speed of symbolic execution and of triage is the major bottleneck for several of our

test runs, however. This shows that future work should focus on improving these two areas.
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Total SymExec Coverage Triage Record Other

gzip-1 206522s 0.1% 0.06% 0.70% 17.6% 81.6%

gzip-2 208999s 0.81% 0.005% 0.70% 17.59% 80.89%

gzip-3 209128s 1.09% 0.0024% 0.68% 17.8% 80.4%

bzip2-1 208977s 0.28% 0.335% 1.47% 14.0% 83.915%

bzip2-2 208849s 0.185% 0.283% 1.25% 14.0% 84.32%

bzip2-3 162825s 25.55% 0.78% 31.09% 3.09% 39.5%

mplayer-1 131465s 14.2% 5.6% 22.95% 4.7% 52.57%

mplayer-2 131524s 15.65% 5.53% 22.95% 25.20% 30.66%

mplayer-3 49974s 77.31% 0.558% 1.467% 10.96% 9.7%

ffmpeg-1 73981s 2.565% 0.579% 4.67% 70.29% 21.89%

ffmpeg-2 131600s 36.138% 1.729% 9.75% 11.56% 40.8%

ffmpeg-3 24255s 96.31% 0.1278% 0.833% 0.878% 1.8429%

convert-1 14917s 70.17% 2.36% 24.13% 2.43% 0.91%

convert-2 97519s 66.91% 1.89% 28.14% 2.18% 0.89%

exiv2-1 49541s 3.62% 10.62% 71.29% 9.18% 5.28%

exiv2-2 69415s 3.85% 12.25% 65.64% 12.48% 5.78%

exiv2-3 154334s 1.15% 1.41% 3.50% 8.12% 85.81%

Figure 4.10: The percentage of time spent in each of the phases of SmartFuzz. The second
column reports the total wall-clock time, in seconds, for the run; the remaining columns
are a percentage of this total. The “other” column includes the time spent solving STP
queries.
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average before average after ratio (before/after)

mplayer 292524 33092 8.84

ffmpeg 350846 83086 4.22

exiv2 81807 10696 7.65

gzip 348027 199336 1.75

bzip2 278980 162159 1.72

convert 2119 1057 2.00

Figure 4.11: On the left, average query size before and after related constraint optimization
for each test program. On the right, an empirical CDF of solver times.

4.7.5 Solver Statistics

Related Constraint Optimization Varies By Program. We measured the size of

all queries to the constraint solver, both before and after applying the related constraint

optimization described in Section 4.4. Figure 4.11 shows the average size for queries from

each test program, taken over all queries in all test runs with that program. We see that

while the optimization is effective in all cases, its average effectiveness varies greatly from

one test program to another. This shows that different programs vary greatly in how many

input bytes influence each query.

The Majority of Queries Are Fast. Figure 4.11 shows the empirical cumulative distri-

bution function of STP solver times over all our test runs. For about 70% of the test cases,

the solver takes at most one second. The maximum solver time was about 10.89 seconds.

These results reflect our choice of memory model and the effectiveness of the related con-

straint optimization. Because of these, the queries to the solver consist only of operations

over bitvectors (with no array constraints), and most of the sets of constraints sent to the

solver are small, yielding fast solver performance.
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4.8 Conclusion

We described new methods for finding integer bugs in dynamic test generation,

and we implemented these methods in SmartFuzz, a new dynamic test generation tool for

x86 Linux binary programs. We then reported on our experiences building the web site

metafuzz.com and using it to manage test case generation at scale. In particular, we found

that SmartFuzz finds bugs not found by zzuf and vice versa, showing that a comprehensive

testing strategy should use both white-box and black-box test generation tools.

Furthermore, we showed that our methods can find integer bugs without the false

positives inherent to static analysis or runtime checking approaches, and we showed that

our methods scale to commodity Linux media playing software. The Metafuzz web site is

live, and we have released our code to allow others to use our work.
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Chapter 5

Conclusion

We have shown that dynamic test generation and whitebox fuzz testing is practical

for large scale testing of widely-used software on the Windows and Linux platforms. Our

work shows that modern constraint satisfaction and binary analysis tools are mature enough

to create a robust testing service, capable of checking multiple properties and finding high

value bugs at modest cost. The work described in this thesis, however, is only a beginning.

We now describe future directions in whitebox fuzz testing itself. We then discuss directions

for improving the remaining stages of the “bug cycle.”

5.1 Whitebox Fuzz Testing: Future Directions

We now sketch several future directions for work in whitebox fuzz testing. For

each direction we give pointers to relevant research work and list some ideas for progress.
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5.1.1 More Application Classes

Our work focuses on file-reading applications for Windows and Linux. These ap-

plications are important because they include media players and file parsers, which account

for a large number of vulnerabilities exploited in practice. Even so, work remains to extend

the approach to other classes of applications, including network facing applications, web

applications, and distributed applications.

In the case of network-facing applications, the Tupni project uses symbolic execu-

tion techniques to extract a grammar which approximates the language of inputs accepted

by a network application. One of the main motivations for such a grammar is as an input

to a grammar-based black box fuzz testing tool, such as SPIKE or FuzzGuru [84]. Directly

applying whitebox fuzz testing techniques here may yield quicker discovery of high value

bugs. In addition, there is the interesting question of how to properly trace and replay

client/server applications.

Web applications, where the client consists of code running inside a web browser

and the server runs as part of a web server, are a major and fast growing class of applications.

Furthermore, the bugs in these applications are typically of a different type than those

found in client programs, e.g. SQL injection attacks instead of buffer overflows. For web

applications, the Arduilla system of Kizeun et al. performs symbolic execution of PHP code

and can synthesize examples of SQL injection and cross site scripting attacks. One of the

problems here is efficiently executing both client and server together, given that the two

pieces have different languages and different runtimes.

Finally, for distributed applications we are not aware of any tool that performs



147

symbolic execution on a whole distributed application. A starting point here would be a

distributed trace and replay tool, such as Friday [37]. One of the key difficulties here is

accounting for the effects of concurrency and timing, either through performing determin-

istic replay of the entire distributed application or by developing a whitebox fuzz testing

technique tolerant of these effects.

5.1.2 The Unreasonable Effectiveness of SMT Solvers

Our work depends on the existence of a solver capable of quickly answering queries

generated by our symbolic execution tools. Fortunately, our results show that today’s

solvers are up to the challenge. Furthermore, every other recent work on dynamic test

generation has found that today’s solvers are capable of quickly solving individual queries

in the majority of cases, even though overall solving time may remain a large proportion of

the tool’s time.

This excellent performance is a paradox, because constraint satisfaction from sym-

bolic execution is undecidable in general, and at least NP-complete if restricted to programs

guaranteed to terminate in polynomial time. Today’s solvers are unreasonably effective at

the special class of instances arising from dynamic test generation. Why should this be so?

With Mark Winterrowd, we have begun a preliminary investigation of this phe-

nomenon. Our method is to generate a large corpus of queries from multiple programs using

the SmartFuzz tool. For each query in the corpus, we test the query solving time for several

different solvers. This gives us an understanding of which queries cause solvers to take a

long time, which in turn points the way toward features of the query that correlate with a

long or short solving time.
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5.1.3 Learning and Hot Spot Prioritization

A key problem in our generational search is how to choose the next test case for

symbolic execution. We saw in Chapter 2 that a simple heuristic based on code coverage

did not lead to a major improvement in the number of bugs discovered in our test programs.

We can formulate this as a reinforcement learning problem, in which a learning algorithm

adaptively makes choices of test cases to symbolically execute and receives feedback in the

form of which test cases lead to the discovery of new bugs and which do not. Each trace

obtained by our tools has multiple features that could inform the choices of a learning

algorithm.

For example, recent work in empirical software engineering shows that bugs cluster

in hot spots, code containing an unusually high proportion of bugs. Such hot spots reveal

themselves by looking at code metrics or at previous discovery spots of security critical

bugs [75]. Common sense states that if particular code is a bug hot spot, then we should

spend more resources on testing that code. We can also use specific machine learning

techniques, such as interpretable regression, to test this common sense.

Supposing for the moment that we do want to prioritize the testing of such hot

spots, however, the best way to do this with whitebox fuzz testing is not clear. As one idea,

we could give preference to generating tests that cover code paths in the hot spot. We could

also use heavier weight static analysis techniques on the hot spot, or invest in generating

summaries of the hot spot code [38].

Once we have built a specific search strategy, we can simply run it on a code

base in parallel with the “vanilla” random choice heuristic described in Chapter 2. Then
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we can measure the difference in bugs found. This approach for evaluation allows for a

“meta-search” over different heuristics until the best heuristic for a given suite of test cases

is found.

A key theoretical question here is how to interpret the results observed from such

experiments. First, without a convincing model of how bugs are distributed in the software

under consideration, we cannot meaningfully define a notion of “statistical significance.”

Second, even if we have a model we believe characterizes some large class of software, how

do we know this model will capture bugs in future software under consideration? The way

to answer these questions may be in using a basket of heuristics that are adaptively weighted

based on initial experience with the software under test, but this needs future research.

5.1.4 State explosion

The problem of picking the next test case to symbolically execute is just a symp-

tom of a deeper problem: the state explosion in the analysis of any reasonably sized soft-

ware. Summaries, as introduced by Godefroid, are one key technique for addressing this

problem [38]. In addition, recent work in this direction has looked at synthesizing loop

invariants and using them to simplify the set of constraints to explore [80].

5.1.5 When Should We Stop Testing?

A long standing question for all forms of software testing is when the cost of contin-

uing to test outweighs the benefit from finding more bugs. Put another way, when should

we stop testing? Dalal and Mallows framed this question as a size-dependent sequential

search problem, in which each bug has a different probability of being found, or “size” (i.e.
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more easily found bugs are “larger”) [27]. They then derive the optimal stopping rule under

certain assumptions about the distribution of bug sizes.

The data generated by our experiments could be used to evaluate this framework

in the context of whitebox fuzz testing. If we take the fuzzy hash from Chapter 4 as our

measure of a bug, then the number of test cases falling into each hash bucket gives us a

natural notion of the observed size for each bug. We could then derive for each test run

the cutoff according to the Dalal and Mallows rule, then run for, say, twice that number of

tests.

The resulting empirical data would help us measure the regret for each test run,

or the amount of value lost if we follow the stopping rule. For example, we might define

regret to be the number of bugs we would have missed by following the stopping rule on

the same test run. We might also try to take into account the fact that there are multiple

programs and multiple test inputs at hand, so the question is how to best allocate resources

jointly across all programs and seed files. In any case, if the regret is consistently low, this

would provide empirical evidence in favor of the given stopping rule.

5.1.6 Cooperative Whitebox Fuzz Testing

We saw in Chapter 2 that Whitebox fuzz testings e?ectiveness depends critically

on the choice of seed input. Where should we look to find “good” seed inputs? Inspired

by Liblit et al.’s Cooperative Bug Isolation [63], it would be interesting to build a system

that uses lightweight instrumentation to identify promising candidates for such seed in-

puts from machines in the wild. Ideally, such instrumentation would be lightweight enough

to be on by default. Instead of focusing only on inputs that cause program crashes, this
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approach looks for inputs that exercise code previously untouched, or exercise new paths

through hot spot code. Because a users inputs can contain sensitive information, it may be

enough to simply send back the path condition exercised by the input, as previously applied

for crash-inducing inputs [19].

5.1.7 Streaming Algorithms and Whitebox Fuzzing

We argued in Chapter 4 that to be efficient with large programs, a tools memory

usage must scale sublinearly in the size of the program trace. The algorithms community

has developed a rich set of techniques for such “streaming algorithms,” which may yield

algorithms for dynamic test generation. The key insight is that the stream of x86 instruc-

tions in a trace matches the model of such streaming algorithms, where the algorithm looks

at each element once and must keep a sublinear (ideally constant) amount of storage.

In addition, we may apply lower bounds for streaming algorithms to characterize

which extensions of dynamic test generation can and cannot be e?ciently implemented. Such

an analysis has been carried out for network intrusion detection properties, which suggests

these techniques could also be applicable to the whitebox fuzz testing case [62].

5.2 Beyond Bug Finding

For many pieces of software, both whitebox and blackbox fuzz testing can quickly

find more bugs in that software than anyone could hope to fix in a lifetime. Therefore, the

bottleneck in managing such bugs shifts to reducing the amount of human time required

to generate and test a patch for a security bug. While there is a rich line of work in
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automatically generating “vulnerability signatures” given an example input triggering a

bug, this work is primarily aimed at worm defense [25] Therefore there is little attention

paid to making the generated patch easy to maintain or understand. As a first step, we

should be able to check that a programmers candidate patch catches inputs that previously

exhibited the underlying bug.

5.3 Final Thoughts

The smart testing service outlined in this thesis was not practical in 2003, when

the author began his PhD. Two major shifts occurred in the intervening six years. First,

SMT solvers matured and targeted program analysis as a key problem domain. Second,

the rise of on-demand computing makes available large amounts of computing power for

short-term engagements, such as testing a single build of software. It is no longer crazy

for security and programming language researchers to consider projects that require storing

information about every run of a program, large amounts of storage, and enormous amounts

of computation for even a single analysis run. Furthermore, these projects can now be used

by others without requiring massive fixed capital costs. These trends will enable a new

style of security research, based on automatic reasoning and analysis, which we can transfer

more quickly to the rest of the world. We need only rise to the challenge.
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