
Please Continue to Hold

An empirical study on user tolerance of security delays

Serge Egelman
Brown University

egelman@cs.brown.edu

David Molnar
Microsoft Research

dmolnar@microsoft.com

Nicolas Christin
Carnegie Mellon University

nicolasc@andrew.cmu.edu
Alessandro Acquisti

Carnegie Mellon University
acquisti@andrew.cmu.edu

Cormac Herley
Microsoft Research

cormac@microsoft.com

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

ABSTRACT
We present the results of an experiment examining the ex-
tent to which individuals will tolerate delays when told that
such delays are for security purposes.1 In our experiment,
we asked 800 Amazon Mechanical Turk users to count the
total number of times a certain term was repeated in a multi-
page document. The task was designed to be conducive to
cheating. We assigned subjects to eight between-subjects
conditions: one of these offered a concrete security reason
(virus-scanning) for the delay, another offered only a vague
security explanation, while the remaining conditions either
offered non-security explanations for the delay or no delay
at all—in the case of the control condition.

We found that subjects were significantly more likely to
cheat or abandon the task when provided with non-security
explanations or a vague security explanation for the delay.
However, when subjects were provided more explanation
about the threat model and the protection ensured by the
delay, they were not more likely to cheat than subjects in
the control condition who faced no such delay. Our results
thus contribute to the nascent literature on soft paternalis-
tic solutions to security and privacy problems by suggesting
that, when security mitigations cannot be made “free” for
users, designers may incentivize compliant users’ behavior
by intentionally drawing attention to the mitigation itself.

1. INTRODUCTION
The computer security community has proposed various

approaches to thwarting security breaches. Such security
mitigations can be divided into three different categories:
mitigations that are invisible to the user, mitigations that do
something noticeable on the user’s behalf, and mitigations
that suggest the user take a particular action. The latter
category, in particular, can come at a substantial cost for
the user. If this cost is too large, users may choose to forgo
the security mitigation, with detrimental individual and col-
lective effects: negative externalities may be created when
users fall victim to security breaches [15], and revenues for
a firm producing more secure products may be lost if users
choose less burdensome (even though less secure) software.

In this paper we explore the cost of security mitigations
from the perspective of the end user, and how manipulat-

1An unpublished version of this work was presented at the
2010 Workshop on the Economics of Information Security
(WEIS).

ing – and offering explanations for – those costs may impact
users’ acceptance of security mitigations. We are specifi-
cally interested in quantifying the inconveniences users will
accept in the name of security. Previous work on security
mitigations investigated costs [6,7,9,13,18,24,28,29,36], but
focused on application compatibility and the speed impact
of the mitigation on a set of benchmarks. In contrast, we
attempt to measure what makes costs of mitigations accept-
able to users. We posit that not only should acceptability of
security mitigations be evaluated directly through user stud-
ies, but that non-normative mechanisms should be devised
to increase the acceptability of those mitigations. By “non-
normative,” we refer to mechanisms that do not affect the
technical performance of the security mitigation, but may
influence the way users react to it: for instance, providing
explanations with varying degrees of detail, making certain
types of information more or less salient, or artificially ma-
nipulating speed and delays in the product’s performance.

As a first step in this line of inquiry, we designed an ex-
periment in which we asked subjects to count the number of
times a specific word appeared in a PDF document using a
custom Flash-based viewer. We purposefully designed this
task to be conducive to cheating : the user could submit a re-
sponse without actually reading the entire document. The
rate of cheating with a “mitigation” in place compared to
“no mitigation” then gives us a quantitative measure of the
acceptability of a security mitigation. That is, if it takes
an unacceptable amount of time to complete the task in one
condition, we would expect to see a disproportionate amount
of cheating in that condition.

We controlled for two common user-facing aspects of a
security mitigation: the presence of a delay and the pres-
ence of a notice explaining the reason for the delay. We
designed our study as a four condition between-subjects ex-
periment: one control condition, with no delay and no no-
tice; one“loading” condition, with a delay but no notice; one
“security”condition with a delay and a vague notice; and one
“security” condition that incorporated a delay along with a
detailed explanation of the threat model and its mitigation.
Based on results from the behavioral economics and social
psychology literature, we hypothesized that subjects would
be more tolerant of the delay when told that the delay was
for security purposes, and when primed with more detailed
explanations of the threat model and its mitigation. Thus,
we expected to see a disproportionate amount of cheating in
only the condition with the delay and no notice.

We conducted our experiment with 400 subjects recruited
from Amazon’s Mechanical Turk. Mechanical Turk is a ser-
vice for advertising “tasks” that can be completed by human
workers for a set price per task. We found that subjects
were significantly more likely to cheat or abandon the task
when provided no explanation or a vague security expla-
nation for the delay. However, when subjects were provided
more explanation about the threat model and the protection
ensured by the delay, they were not more likely to cheat than
subjects in the control condition who faced no such delay.
Thus, when subjects were primed for security and the delays
supported the security priming, subjects were compliant.

After performing our initial experiment, several open ques-
tions remained regarding how participants would behave
when given an unambiguous non-security explanation for the
delay versus the vague explanation. Likewise, we wanted to
examine the extent to which priming our participants for
security influenced our results. To answer these questions,
we recruited an additional 400 subjects who were assigned
to four new conditions. Thus, this paper reports on a user
study with 800 total subjects.

Our findings suggest that if a delay is necessary due to
a security mitigation, then the mitigation may be more ac-
ceptable to users if they are told of the threat model and
how the mitigation protects them. This advice may sound
counterintuitive, given that most security mitigations inten-
tionally do not make themselves visible to the user unless
an attack occurs, and perhaps not even then. For exam-
ple, Windows programs do not usually employ pop-ups to
inform users that address space randomization is being used
or that stack canaries are being inserted. On the other hand,
many anti-virus programs do explicitly warn the user when
a scan is in progress, which may incur significant delays to
user operations. There is therefore a tension between se-
curity which is “invisible,” and measures made explicit “for
security reasons.” In this paper, we attempt to better char-
acterize these tensions by providing empirical evidence. Our
work shows that user studies of security mitigations shed im-
portant light on the acceptability of mitigations in contexts
not well served by previous approaches. In this regard, our
results contribute to the nascent literature on soft paternal-
istic solutions to security and privacy problems.

Our approach side-steps the question of “is X% overhead
on this benchmark a lot or a little?” by placing the user-
facing aspects of the mitigation directly in the context in
which they are experienced by users. Because the techni-
cal aspects of the actual mitigation can be abstracted away,
these types of user studies can be generalized to yield ac-
tionable findings for multiple types of security mitigations.
Therefore, we believe user studies are an important addition
to traditional benchmarking and application compatibility
analysis for evaluating security mitigations. Our experience
with Mechanical Turk shows that these studies can be car-
ried out at modest cost even with hundreds of users. We
hope this will encourage others to perform such studies as
part of the process for evaluating future security mitigations.

2. BACKGROUND
Our work responds to and is informed by traditions from

computer security, behavioral economics, human-computer
interaction/computer-supported collaborative work, and psy-
chology. We now discuss background from each of these
communities in detail.

Computer Security. Security mitigations are features
of an application or operating system that make it more dif-
ficult for an adversary to take control of a victim’s computer,
even when the victim’s software has a bug such as a buffer
overflow. The value of a security mitigation is that it trades
speed and application compatibility for increased attack dif-
ficulty, without requiring the defender to have detailed, spe-
cific knowledge of the attack in advance. This tradeoff is
attractive because finding all bugs in computer software or
enumerating specific attacks ahead of time is incredibly dif-
ficult.

The computer security community has a long list of pro-
posed mitigations stretching over more than fifteen years.
Classic examples include stack canaries [7,13], address space
layout randomization [28], automatic bounds checking [6,
18], and non-executable memory [24,28]. More recent exam-
ples include software changes such as Nozzle [29], or efficient
software fault isolation for x86 and x64 architectures [23,36],
and hardware changes such as those found in Raksha [9] or
SmashGuard [27]. Anti-virus software can also be viewed
in this category, and it has been undeniably successful com-
mercially.

In the evaluation section of every proposal of which we
are aware, the cost of a mitigation is evaluated along two
axes: the loss in speed on benchmarks and the impact on
application compatibility. Application compatibility is an
important consideration, but one which we do not address
in this work. Another increasingly important phenomenon
is that adversaries can develop reliable methods for bypass-
ing mitigations [11]; once such bypasses are found, users pay
the cost of the mitigation but receive no benefit against so-
phisticated adversaries.

Even so, a major part of discussions on adoption from the
earliest mitigations to the present centers on whether a spe-
cific speed impact is “too much,” as measured on a set of
benchmarks. The key problem we address is that measuring
speed on benchmarks is merely a proxy for measuring user
acceptance of a mitigation. Clearly, if there is no speed im-
pact from adopting a mitigation, the experience of the user
with the mitigation is indistinguishable from the original
experience in the common case where no attack is present.
Therefore the mitigation will be acceptable.

Unfortunately, in most cases security mitigations cannot
be made “free.” The computer security community has then
historically proceeded to the difficult question: “is the speed
impact of the mitigation on these benchmarks acceptable?”
Complicating the question is the fact that“acceptance”means
different things in different scenarios. For example, an ad-
ditional 50 milliseconds to load a web page may lead to a
significant loss in revenue for a web site. An additional hour
added to a batch job, which normally takes a year, may not
be noticed. While research has been done to examine the
wait times that most Internet users will tolerate [14,26], none
of these studies specifically addressed security explanations
for these delays.

Behavioral Economics, Usability, and Soft Pater-
nalism. Our contribution can be related to the nascent
literature on the application of soft paternalistic approaches
[22,34] to privacy [2,35] and security [5] problems. In recent
years, there has been growing interest in understanding the
psychological motives, as well as the possible cognitive and
behavioral biases, that affect privacy [1] and security [3, 31]
decision making. In parallel, the computer science commu-

nity has started investigating how to make privacy and secu-
rity systems more usable [8]. These streams of research con-
verge when lessons derived from the behavioral economics,
decision research, or psychological literatures are incorpo-
rated into the design of systems that take into account sys-
tematic biases that affect our decision making in informa-
tion security. These approaches do not merely aim at mak-
ing systems more usable, but to actually anticipate known
and costly biases – and sometimes even exploit those bi-
ases in manners that nudge users towards certain choices,
without limiting their freedom [22, 34]. Some specific ex-
amples include providing salient information [35], creating
interactive audited dialogs [5], and better conveying risks to
non-experts [3].

Psychology. Milgram explored the role of obedience to
authority in his seminal 1963 experiment. He concluded
that people are generally compliant with requests—however
bizarre or nonsensical—when those requests come from peo-
ple in positions of authority [25]. While work on obedience to
computer security mitigations has some parallels, our work
differs in that our requests did not come from a human being
in a position of authority. Our experiment tests a hypoth-
esis related, in part, to the results of a famous experiment
by Langer, Blank, and Chanowitz [21]. In their series of
experiments, they showed that even “placebic” information
provided in the form of explanation, or reason for a request,
was sufficient to generate compliance with a request, even
though the reason itself conveyed no actual information. In
our experiments, we tested whether providing an explana-
tion for the security delays in loading pages would, in fact,
increase the likelihood that subjects would comply with the
security mitigation.

3. METHODOLOGY
We conducted an experiment using Mechanical Turk to

examine whether people would put up with an inconvenience
if they were told it was for security purposes. We conducted
our experiment with two cohorts of 400 participants each,
for a total of 800 participants. In this section we describe
the study environment and the initial four conditions that
we created. In Section 4 we present our results and our
rationale for adding the second cohort of 400 participants,
including the motivations for the additional four experimen-
tal conditions that we created.

Researchers have recently begun using Mechanical Turk
as a way to quickly perform large-scale human subjects ex-
periments for very little cost [19]. In 2009, Ross et al. per-
formed a series of surveys using Mechanical Turk and con-
cluded that the demographics do not significantly differ from
the population of U.S. Internet users [30]. In 2009, Jakob-
sson performed an experiment to study the quality of work
produced by Mechanical Turk users. He commissioned a sur-
vey using Mechanical Turk as well as an identical one using
an“established, independent survey company”and found no
significant differences between the two participant pools [17].

We created a task wherein we told study subjects that
they were beta testing a new web-based document viewer,
SuperViewer (Figure 1). When first launching SuperViewer,
all subjects saw a progress bar that took ten seconds to load
before displaying the first page of the document. Those
in the Control condition never saw this progress bar again,
while those in the three experimental conditions repeatedly
saw this progress bar each time they viewed a new page

Figure 1: Screenshots of the SuperViewer interface.
Subjects were able to change pages using the arrow
buttons. The above image shows the loading screen
that all subjects saw when first launching Super-
Viewer; subjects in the control condition never saw
this screen again, while those in the experimental
conditions repeatedly saw it on every page. The
page number indicator was subsequently removed
after our pilot studies.

of the document (i.e., they had to wait ten seconds each
time they turned to a new page). The three experimental
conditions differed based on the text used to explain the
reason for the progress bar.

For the task itself, we asked subjects to read a document
using SuperViewer. We told subjects that to receive pay-
ment, they must report the frequency that a particular word
occurred in that document. Thus, they would have to read
the entire document in order to accurately answer the ques-
tion. SuperViewer features a very basic interface: two but-
tons for navigating forward and backward in the document,
which forced subjects to view the document pages in order.
Likewise, there was no“search”functionality, otherwise com-
pleting the task would have been trivial. One goal of this
task was to make it appear indistinguishable from other non-
research Mechanical Turk tasks (e.g., product categoriza-
tion, image labeling, etc.). Thus, if subjects did not believe

they were engaged in a research study for the public good,
they may have been more inclined to “cheat.” We defined
cheating as submitting a response to receive credit without
using SuperViewer to read the entire document (e.g., read-
ing part or none of the document). Our main interest was
to examine whether subjects’ cheating varied based on the
four between-group conditions we created:

• Control — SuperViewer was launched when subjects
clicked a button. Immediately after launching, a progress
bar was displayed for ten seconds with the label,“Load-
ing.” After this ten second period, the first page of the
document was displayed. Subjects could change pages
in the document by clicking one of two arrow buttons.
Thus, subjects were forced to view pages in order.

• Loading — This condition was identical to the Con-
trol condition, with one exception: when advancing
to a subsequent page after the first, an additional ten
second progress bar—also labeled “loading”—was dis-
played before subjects were allowed to view the next
page. Subjects only saw these progress bars once for
each new page; subjects would not see a progress bar
again when flipping to a previously viewed page. The
purpose of this condition was to examine whether study
subjects would tolerate an unknown delay or whether
they would cheat by quitting the task early and re-
porting an incorrect word frequency.

• Security — This condition was identical to the Load-
ing condition, with one exception: the label on the
progress bar was changed from“Loading” to “Perform-
ing security scan.” The purpose of this condition was
to examine whether study subjects would tolerate a
delay when they were told it was for security purposes
or if they would cheat by quitting the task early and
reporting an incorrect word frequency.

• SecPrimed — This condition was identical to the Se-
curity condition, with one exception: prior to launch-
ing SuperViewer, subjects were informed of the danger
of viruses embedded in online documents and that Su-
perViewer scans documents for their protection. The
purpose of this condition was to examine whether sub-
jects were any less likely to cheat if they understood
why the“security scan”was being performed, or if sim-
ply performing an ambiguous security function was
reason enough (as was the case in the Security con-
dition).

Prior to launching the SuperViewer applet, subjects were
shown a page of information about the software (Figure 2).
The main purpose of this page was to prime those in the
SecPrimed condition to security concerns and to convince
them that the software was protecting them against a legiti-
mate threat model. In order to balance all of the conditions
in terms of total workload required of our subjects—the to-
tal amount of text to read—we added a placebo text page
for those in the other three conditions.

In order to determine whether our subjects cheated dur-
ing the experiment, we recorded the number of unique doc-
ument pages they viewed, the total number of pages viewed,
the time it took them between opening the document and
submitting their response, and the numerical response that
they submitted.

Figure 2: Screenshot of the instructions subjects saw
before launching SuperViewer. The image above
was seen by those in the Control, Loading, and Secu-
rity conditions. The image below was seen by those
in the SecPrimed condition.

Upon completing the initial experiment, we invited sub-
jects to complete a survey based on their experiences using
SuperViewer in exchange for a bonus payment. The first
page of the survey asked subjects about their overall opin-
ions of SuperViewer and the factors that influenced those
opinions: color, look and feel, ease of use, speed, and secu-
rity features, each rated using a 5-point Likert scale. The
second page of the survey contained questions about sub-
jects’ risk perceptions, both when they used SuperViewer
during the experiment, as well as when performing other
activities on their computers (e.g., browsing the web, read-
ing email, downloading files, etc.). The third page of the
survey contained questions about what anti-virus software
the subjects currently used, as well as the types of threats
they believed said software guarded against. Finally, the
fourth page of the survey featured demographic questions.

3.1 Pilot Studies
We decided to pilot our experiment using five pages from

Alice in Wonderland as the document, and we used a version
of SuperViewer written in Java. We offered to pay each
participant $0.05 to complete the task and we targeted 100
subjects, who were randomly assigned to the four conditions.
Overall, we were underwhelmed at the rate of response to
this task; it took us fifteen days to recruit 100 subjects. We
decided that we needed to pay our subjects more, and so we
created another 100 tasks, but this time paying $0.11 per
participant. This time it took us only six days to recruit
100 subjects.

While we had decided that we must pay subjects at least
$0.11 to complete this experiment in a timely manner, we
discovered another potential caveat: several subjects had
emailed us indicating that they could not load the viewer.
In fact, while 200 people completed these pilot experiments,
355 others attempted to complete the task but were un-
successful. Given that almost two thirds were unable to
complete the task, we assumed that this was due to Java
incompatibilities. Thus, we decided to rewrite SuperViewer
in Flash.

We created a third pilot study to evaluate our Flash imple-
mentation. We recruited another 100 subjects and decided
to pay them $0.05, since we reasoned that with fewer techni-
cal incompatibilities from using Flash, we may receive an ad-
equate participation rate with our original payment amount.
Indeed, instead of taking fifteen days, using Flash allowed us
to gather data from 100 subjects in just eight days. During
the task itself, we asked subjects how many times the word
“Hatter”occurred in the text, the correct answer being eight.
Of our 100 subjects, only two clearly cheated, and each was
in a different condition. We concluded that the task was too
easy to perform, and therefore it would require an inordinate
number of total subjects to get enough cheaters. Thus, we
needed to make the task both longer and more frustrating;
we changed the text from five pages of Alice in Wonderland
to ten pages of Ulysses. The tenth page of the document
only filled half a page, though we added a blank 11th page
to indicate the end of the document. Because of this, we
considered anyone who reached either page ten or eleven to
have viewed the entire document.

The pilot versions of SuperViewer all displayed the current
page number and the total number of pages in the document
(Figure 1). By removing this status indicator, we reasoned
that subjects will become more frustrated when they have
no indication of when the task will end, and therefore, the
observed effect size would be greater. Finally, we increased
the payment to $0.11 again, since we expected many more
subjects to abandon the task without submitting any data,
and therefore we needed a larger population.

4. ANALYSIS
A total of 800 Mechanical Turk users participated in our

experiment between February 1st and April 5th, 2010. These
subjects were randomly assigned to eight conditions. The
first cohort of 400 subjects were assigned to the four exper-
imental conditions outlined in Section 3. Three weeks later,
we extended the experiment by recruiting a second cohort
of 400 subjects and assigning them to four new conditions,
which we describe and analyze in Section 4.2. The distri-
bution of cheating across all eight conditions is presented in
Figures 3 and 4. We observed several significant differences
between the conditions. In this section we analyze these dif-
ferences, both in terms of the number of people who cheated,
as well as subjects’ task performance.

4.1 Cheating
Subjects were required to read ten pages of Ulysses in or-

der to answer the question, “how many times did the word
said appear?” The correct answer was 23. We considered it
cheating if a participant submitted an answer to this ques-
tion without reading the entire ten pages. We hypothesized
that subjects who had to wait for the progress bars to load
before viewing subsequent pages would be significantly more

 100%

Control Loading Security SecPrimed

P
er

ce
n

ta
g

e
o

f
P

ar
ti

ci
p

an
ts

Read All

Read Some

Read None

 0%

 20%

 40%

 60%

 80%

Figure 3: The number of participants who cheated
in each of the four initial conditions. Because condi-
tions were randomly assigned, the number of partic-
ipants in each condition were not equal, which is why
this data is graphed as a percentage. Overall, partic-
ipants in the Control and SecPrimed conditions were
significantly less likely to cheat than participants in
the other two conditions.

likely to cheat than those in the Control condition. We fur-
ther hypothesized that subjects who were told that this de-
lay was for “security purposes” would be less likely to cheat
than those who were not given an explanation for the delay
(i.e., those in the Loading condition). Finally, we hypoth-
esized that subjects who were given details of the threat
model and the mitigation (i.e., the SecPrimed condition)
would be just as likely to cheat as those who did not receive
this information (i.e., the Security condition).

Overall, we found that our hypotheses were partially cor-
roborated: subjects in the Control and SecPrimed conditions
were significantly less likely to cheat than those in the Load-
ing and Security conditions (χ2

3 = 10.676, p < 0.014). This
indicates that subjects were more likely to cheat when they
had to wait, except when they were told exactly why they
had to wait; the label on the progress bar made no observ-
able difference, except when subjects were informed of the
danger of PDF viruses and that they were being protected
by our software.

We further hypothesized that we would observe two types
of cheating: subjects who submit answers before viewing
any of the document and subjects who submit answers be-
fore reaching the last page (but after opening the document).
The former type of cheating happens before subjects expe-
rience any types of delays, and therefore should be equally
distributed across all of the conditions. Indeed that was the
case: a chi-square test indicated no significant differences
between the groups with regard to subjects who submitted
an answer without ever viewing the document. We therefore
decided to remove these subjects from the rest of our anal-
ysis, since they did not provide us with any data relevant
to our hypotheses. Our results are robust to the point of
yielding significance even with these subjects.

We examined the second type of cheating, subjects who
submitted answers after only partially reading the docu-
ment, and found significant differences between the condi-
tions (χ2

3 = 8.619, p < 0.035). Furthermore, we believe that
this effect was diminished by the ability to “return” a Me-
chanical Turk task without receiving credit. Subjects who

did not wish to complete the task—but who also did not
wish to cheat by entering an arbitrary answer without read-
ing the entire document—had the ability to return the task.
Unfortunately, Mechanical Turk does not give us the ability
to view the data from participants who chose to return the
task (nor did we think to instrument SuperViewer to collect
this data), so it is unclear if a disproportionate number of
participants returned the task in one condition over another.

4.2 Additional Conditions
Examining our first four conditions, we found that when

participants were provided with a detailed security explana-
tion for the delay, they were significantly more tolerant than
participants who did not see a detailed explanation. This in
and of itself does not prove that participants were more tol-
erant because we displayed a security explanation. It merely
shows that without a specific explanation, participants were
more likely to cheat. It is possible that providing a different
detailed explanation unrelated to security may have yielded
a similar effect. Likewise, it is entirely possible that if we
changed the “Loading” label to represent something more
concrete, participants may have behaved differently.

We also had concerns about the full effect of priming sub-
jects in the SecPrimed condition. It can be argued that from
the onset, we divided participants into two groups: security-
primed and not security-primed. The other conditions could
then be interpreted as subgroups of the latter group. That
is, from our initial experiment, it is unclear to what extent
participants in the SecPrimed condition were influenced by
the security priming versus the label on the progress bar.
Thus, the effect of the priming information cannot be sepa-
rated from the effect of the progress bar.

Finally, participants in the SecPrimed condition were ex-
posed to progress bar labels that directly supported the
priming information; the priming information informed them
of new security features, while the delay was directly at-
tributed to these security features through the progress bar
labels. Thus, the effect may have been attributable to this
link. We decided to further examine these open questions
by creating four additional experimental conditions. Each of
these new conditions was identical, with the exception of the
introductory priming information (Figure 2) and the labels
on the progress bars:

• Adjusting — This condition was identical to the Load-
ing condition (i.e., no priming information), however,
we changed the labels on the progress bars from the
ambiguous “Loading” to “Adjusting document width.”
The purpose of this condition was to examine whether
participants were as likely to cheat with a unambigu-
ous non-security delay explanation versus an ambigu-
ous non-security explanation.

• AdjPrimed — This condition was identical to the
Adjusting condition, however, we added priming in-
formation similar to that shown in Figure 2. In this
condition, we examined whether participants would be
as likely to cheat when the non-security delay sup-
ports the non-security priming. In the introductory
screen, participants were informed that SuperViewer
includes a new feature to dynamically resize docu-
ments to better fit their screens. Thus, when the de-
lay occurred, the labels that read“Adjusting document
width” clearly supported this feature.

 100%

Adjusting AdjPrimed AdjSecure Downloading

P
er

ce
n

ta
g

e
o

f
P

ar
ti

ci
p

an
ts

Read All

Read Some

Read None

 0%

 20%

 40%

 60%

 80%

Figure 4: The number of participants who cheated in
each of the additional four conditions. We observed
no significant differences between these conditions.
Overall, when compared with our initial four con-
ditions, participants in the Control and SecPrimed
conditions were significantly less likely to cheat than
participants in any of the other six conditions.

• AdjSecure — This condition was identical to the Ad-
justing condition, however, we added the same security
priming information that we used in the SecPrimed
condition. The purpose of this condition was to sepa-
rate the effects of the security priming with the effect of
the excuse for the delay. That is, from the SecPrimed
condition, we only learned that the combination of the
security priming and security label on the progress bar
were effective; we did not previously determine the ef-
fect of the security priming by itself.

• Downloading — This condition was identical to the
Adjusting condition, however, we changed the word-
ing on the progress bar to a second unambiguous non-
security explanation. The purpose of this condition
was to confirm that there was nothing unique about
the Adjusting condition, and that any similar unam-
biguous non-security explanation would have a similar
effect.

The results from these conditions can be seen in Figure 4.
As can be seen, we observed no statistically significant differ-
ences between these four conditions with regard to cheating.
More importantly, when we compared all eight conditions
(Table 1), we still observed significantly less cheating in the
Control and SecPrimed conditions (χ2

7 = 14.782, p < 0.039).
When we removed the participants who viewed none of the
document before submitting an answer, our results were sim-
ilarly robust (χ2

7 = 14.972, p < 0.036). Thus, our experi-
ment indicates that participants were significantly less likely
to cheat only when they were primed for security and only
when the explanation for the delay supported the security
priming.

4.3 Task Performance
We examined the accuracy of subjects’ responses, as well

as the amount of time they spent performing the task to
determine if there were any differences in their performance
based on the conditions. We first examined the accuracy of
subjects’ answers, and found no significant differences be-
tween the four conditions. However, we did observe that

Condition N Total Time (s) Time Per Page (s) Unique Pages Total Pages Cheaters

Control 119 447 50.9 9.68 19.26 15 (12.6%)
Loading 91 485 56.6 8.71 13.33 24 (26.4%)
Security 87 514 63.4 8.47 12.20 25 (28.7%)
SecPrimed 103 517 56.9 9.43 14.22 18 (17.5%)
Adjusting 88 427 55.8 8.44 11.59 26 (29.5%)
AdjPrimed 100 474 56.8 8.98 12.90 27 (27.0%)
AdjSecure 104 513 66.1 8.71 14.21 25 (24.0%)
Downloading 108 504 70.8 8.62 15.93 29 (26.9%)

Table 2: The number of subjects in each of the eight randomly-assigned conditions, the average time spent
performing the task, the average reading time per page, the average number of unique pages viewed (out of
a maximum of 11), the average number of total pages viewed, and finally the number of people who cheated
by not reading the entire document before submitting a response.

Condition N 0 Pages 1-9 Pages 10-11 Pages

Control 119 3 (2.5%) 12 (10.1%) 104 (87.4%)
Loading 91 4 (4.4%) 20 (22.0%) 67 (73.6%)
Security 87 8 (9.2%) 17 (19.5%) 62 (71.3%)
SecPrimed 103 6 (5.8%) 12 (11.7%) 85 (82.5%)
Adjusting 88 4 (4.5%) 22 (25.0%) 62 (70.5%)
AdjPrimed 100 2 (2.0%) 25 (25.0%) 73 (73.0%)
AdjSecure 104 5 (4.8%) 20 (19.2%) 79 (76.0%)
Downloading 108 8 (7.4%) 21 (19.5%) 79 (73.1%)

Table 1: The number of subjects in each condition
who read none of the document, some of the doc-
ument, or all of the document before submitting a
response. We considered subjects in the first two
categories to have cheated. Recall that we consid-
ered those who reached either page ten or eleven as
completing the document, since the tenth page was
half empty, while the eleventh page explicitly stated
it was the end of the document.

across every condition, cheaters reported significantly differ-
ent results from those who read the entire document (t758,
p < 0.0005). Likewise, we observed that the distance of
subjects’ answers from the correct answer was inversely cor-
related with the number of unique pages they visited (r =
−0.543, p < 0.0005). That is, the more pages the subjects
read, the closer their answers were to the correct answer.

We found no significant differences between the exper-
imental conditions when we examined how long subjects
spent reading each page. Across all conditions, those who
cheated spent significantly less time on the task: t758 =
10.931, p < 0.0005. However, we did notice significant dif-
ferences based on experimental condition when we examined
how many pages subjects viewed. Table 2 depicts the av-
erage number of unique pages each participant viewed, as
well as the average number of total pages (i.e., counting
the same page multiple times if a participant revisited that
page). When we examined the total number of pages sub-
jects visited on average, we found that those in the Control
condition revisited significantly more pages than those in the
other conditions (F7,752 = 2.800, p < 0.007).

4.4 Exit Survey
After subjects completed the experimental portion of this

study, we sent them an email offering them an additional
$0.50 in exchange for completing a survey on their opinions

Condition N Speed Speed Security
Rating Concerns Concerns

Control 63 4.38 6 (9.5%) 5 (7.9%)
Loading 40 3.53 13 (32.5%) 5 (12.5%)
Security 38 3.71 10 (26.3%) 6 (15.8%)
SecPrimed 46 3.65 12 (26.1%) 12 (26.1%)
Adjusting 56 3.63 24 (42.9%) 7 (12.5%)
AdjPrimed 48 3.23 21 (43.8%) 6 (12.5%)
AdjSecure 55 3.33 23 (41.8%) 15 (27.3%)
Downloading 64 3.45 30 (46.9%) 3 (4.7%)

Table 3: The differences in survey responses with
regards to perceptions of speed and security dur-
ing the experiment. The columns show the num-
ber of respondents in each experimental condition,
their average response using a 5-point Likert scale
to rate the speed of SuperViewer, and the number
of respondents in each condition who explicitly men-
tioned performance or security concerns.

of SuperViewer. We received a total of 419 valid responses.
After filtering out subjects who cheated by submitting an
answer without ever opening the document, we were left
with 410 responses. These respondents claimed to be 273
men and 137 women, with 79% of our respondents holding
a college degree or higher. It should be noted that all de-
mographic data was self-reported and unverified, and there-
fore it may not representative of reality. Likewise, survey
respondents were self-selected from our population of exper-
imental subjects, and therefore may not be representative of
the entire population. However, we observed no significant
differences with regard to demographics between any of the
conditions. Additionally, the proportion of cheaters who re-
sponded to our survey did not differ significantly from the
proportion of cheaters who participated in our experiment.
Of these 410 respondents, 82 of them (20.0%) cheated during
the experiment by submitting a response after only partially
reading the document.

On the first page of our survey, we asked respondents
to report their overall impressions of SuperViewer using a
5-point Likert scale. We also asked respondents to rate
several factors that contributed to this impression: ease
of use, color, look and feel, speed, and security features.
Using an ANOVA, we observed a significant difference be-
tween the conditions when it came to perceptions of speed
(F7,402 = 7.285, p < 0.001). Upon performing post-hoc anal-

ysis using Tukey’s adjustment for multiple testing, we found
that people in the Control condition rated speed significantly
higher than those in the Loading (p < 0.048), AdjPrimed
(p < 0.0005), and AdjSecure (p < 0.001) conditions. These
findings were expected, since those in the Control condition
were not subjected to additional waiting times. After our
initial experiment, we also found significant differences be-
tween the Control, Security, and SecPrimed conditions, but
these differences disappeared after we doubled the number
of conditions. The average ratings are displayed in Table
3. Despite the differences in speed, we noticed no difference
between the conditions regarding the impact of security fea-
tures on respondents’ overall opinions of SuperViewer. Over
50% of respondents said that “ease of use” was the primary
factor that influenced their overall opinion of SuperViewer,
which was consistent across the eight conditions.

When we asked subjects what they disliked most about
SuperViewer, 139 of them (33.9%) said something about
performance or the time it took to load each page:

• It was very slow.

• Pages a little slow to load.

• Loading a page with “security features” took an obscene
amount of time.

• The loading time of the security features.

We performed a chi-square test to examine whether a dis-
like for the speed was predominant in any of the experi-
mental conditions. Significantly fewer people in the Control
condition reported speed as being the source of their dislike
(χ2

7 = 29.399, p < 0.005). Thus, it is likely that this ef-
fect was in response to the presence of the progress bars in
all seven experimental conditions. The breakdown of these
responses are displayed in Table 3.

We asked subjects whether they felt there was a danger
viewing the document with SuperViewer and to rate that
danger using a 5-point Likert scale. We noticed that 64 of
the respondents (8%) said that they had no idea and there-
fore could not rate the danger. We therefore removed these
respondents when we analyzed this question. We observed
significant differences between the eight conditions with re-
gard to subjects’ perceived dangers (F7,338 = 3.692, p <
0.001). Upon performing post-hoc analysis using Tukey’s
adjustment for multiple testing, we found that this differ-
ence was due to respondents in the SecPrimed condition
rating the danger significantly higher than respondents in
the Control condition (p < 0.030). As a follow-up question,
we asked respondents to describe any concerns that they had
during the experiment. We observed that those who were
primed for security concerns—the SecPrime and AdjSecure
conditions—were more than twice as likely to raise security
concerns than those in the other conditions (χ2

7 = 20.016,
p < 0.006). Some of these concerns included:

• Security is my major concern here. Is it really safe to
view PDF?

• Wasn’t sure if it contained a virus.

• I was a bit concerned when it ran a (sort of) virus scan
before displaying the text.

• What if there is a virus attached to the PDF file?

Our results indicate that the security priming prompted
participants’ security concerns. However, those in the Ad-
jSecure condition were almost twice as likely to cheat than
those in the SecPrime condition. This indicates that once
security concerns were raised, participants were more likely
to accept the delay when believed it was designed to ad-
dress their security concerns. Likewise, participants in the
Security condition cheated because they were not primed for
security; they did not have increased security concerns and
therefore did not care about the mitigation.

5. DISCUSSION
Our experimental findings were slightly different than what

we expected. In the physical world, people must undergo
various security mitigations of questionable effectiveness, all
the while remaining fairly complaisant. Schneier has writ-
ten at length about “security theater,” security measures
that have no security value other than demonstrating to the
public that something is being done [32]. Photo identifi-
cation is checked at office buildings to compare visitors to
non-existent watch lists, liquids are banned from airplanes
despite evidence that attacks using liquid explosives are im-
practical, and soldiers with unloaded weapons are placed in
prominent public places. Yet the public in general is fairly
tolerant of these ineffective security measures, even though
they are inconvenient both in terms of time and cost. While
the TSA arguably causes more visible inconvenience and de-
lay than most U.S. government agencies, elected representa-
tives do not receive enough constituent complaints for them
to actually change policy. In fact, it is likely that investment
in technologies such as full body scanners is done mainly to
ease perceptions of security, rather than to increase actual
security [4]. This lead us to hypothesize that humans may
be tolerant of these inconveniences at the mere mention of
“security,” whether rational or not.

In this section we explore how our hypotheses compared
with the data we collected. We discuss several possible ex-
planations for participants’ behaviors and explain the greater
applications for research in this area. Finally, we discuss
some of this study’s shortcomings and outline future work
in this area.

5.1 Explanations
Our initial motivation for the contrast between the Secu-

rity and SecPrimed conditions was to examine the role of
bounded rationality when people tolerate the security de-
lays. Those in the Security condition had no rational reason
to tolerate the delay, since no explanation was given other
than the ambiguous “security scan” label on the progress
bar. Whereas those in the SecPrimed condition were given
a plausible explanation for the security scan. If no significant
differences were detected, we hypothesized that this would
be due to bounded rationality: participants would not need
to understand the security explanation to comply. Based on
the parallels between our experiment and previous work on
soft paternalism and bounded rationality, we did not expect
to observe a statistically significant difference in behaviors
between these two conditions. We were surprised that this
was not the case.

Taken at face value, our results indicate that when given
a valid explanation for a security delay, people will tolerate
it. While at the same time, without a plausible explanation
or without an understanding of the threat model, people

will not tolerate the same delay regardless of whether they
are told it is for “security purposes.” We believe there are
several possible explanations for these results.

5.1.1 Habituation
Computer security concerns have grown to prominence in

recent years, such that even casual users must interact with
security mitigations. Users are told to keep antivirus soft-
ware up to date, to visit only secure websites denoted by
a lock icon, and to think critically about the software they
install. Yet from users’ perspectives, they see a large quan-
tity of computer security mitigations, but a fairly low attack
rate. This calls into question whether these mitigations are
worth the cost to users [16]. In the case of SSL warnings, one
of the most noticeable user-facing computer security mitiga-
tions, the false positives dwarf the actual positives. Users
become habituated to ignoring security warnings because
the warnings either do not explain the risks and the threat
model, or they use jargon such that users do not compre-
hend them [12,33]. Thus, users become habituated to many
computer security mitigations because they see them so fre-
quently and rarely associate them with consequences.

Due to habituation, users ignore security mitigations when
they do not understand risks. This may explain the lack
of differences when comparing the Security condition with
the other non-security conditions. When users were forced
to wait for an arbitrary security check that they did not
understand, they did not believe they were in any danger.
In the exit survey, 26% of the participants in the SecPrimed
and AdjSecure conditions mentioned security concerns, over
65% more than those in the Security condition. Thus, it
is possible that without highlighting a specific threat, users
are habituated to computer security messaging. It is not
clear whether this is actually different from behaviors in the
physical world; humans are much better at conceptualizing
physical world threat models than online threat models.

5.1.2 Reciprocity
Another possible explanation for the lack of cheating among

participants in the SecPrimed condition is that they felt
more obliged to complete the task than participants in the
other conditions. Since these participants were told about
the threat model and how our software was protecting them,
they may have felt like they owed us something in return,
since we were performing a service on their behalf. We ob-
served that participants in the seven experimental conditions
all ranked the speed of the program as significantly worse
than those in the Control condition. This correlates with
seeing the progress bar before viewing each page. However,
participants in the SecPrimed condition, while just as an-
noyed as those in the other experimental conditions, were
more likely to read through to the end of the document.

5.1.3 Sunk Costs
In Section 4, when we observed no significant differences

with regard to the amount of time taken, we adjusted partic-
ipants’ completion times to account for the amount of time
they had to wait in each condition. That is, we were measur-
ing the amount of time participants spent reading the docu-
ments, which did not include the amount of time they spent
waiting. We did this because the waiting time was artifi-
cially created by us. However, when we factor this waiting
time back into each condition, we found significant differ-

ences (F7,752 = 2.234, p < 0.030). Those in the SecPrimed
condition spent significantly more time in total than those
in the Control condition (p < 0.046, post-hoc analysis using
Tukey’s correction for multiple testing).

This may explain why those in the SecPrimed condition
did not cheat any more than those in the Control: partici-
pants in the former condition had invested almost 40% more
time to complete the task! Thus, the sunk time cost may
have dissuaded them from abandoning the task. However,
this explanation is less plausible since those in the SecPrimed
condition did not spend significantly more time than those
in the other experimental conditions where cheating was sig-
nificantly more abundant.

5.2 Applications
The study presented in this paper and its results have

several immediate applications, both for computer security
and public policy.

5.2.1 Security Messaging in Software Systems
Previous work [33] has shown the importance of security

warnings in software systems in leading people to adopt se-
cure behavior. The present study shows that, in addition to
making systems more secure, good advance warning systems
that clearly explain the rationale for a design choice, also
render the system considerably more psychologically accept-
able, and make people more likely to tolerate the security
choices made for them “under the hood” when these come
at a cost.

5.2.2 Alpha Testing Security Features
Security features are best tested by a large number of

users, as the multiplication of different use cases across a
varied user pool can uncover a number of vulnerabilities that
would be harder to observe with a limited amount of test-
ing. The novel contribution of our study is to show that al-
pha testing (similar to pilot studies in a usability context) is
also of utmost importance to gauge the psychological accept-
ability of security mitigation mechanisms. Performing these
types of studies is also extremely cost effective: between our
pilots, the experiment, the bonus survey payments, and the
fees to Amazon, this study cost under $350 (beyond the re-
searchers’ time). In this manner, scientific results can be
used to guide engineering decisions.

As a case in point, consider the relatively complex set of
warnings that have to be bypassed to accept a self-signed
certificate in Firefox 3. The original beta versions of Fire-
fox 3 contained a 11-step bypass mechanism, which, while
marginally increasing security, also utterly annoyed users.
Eventually, the bypass mechanism was reduced to a more
manageable 4-step process, which is still perceived as too
lengthy and impractical given the number of self-signed cer-
tificates in circulation [33]. Alpha testing could have helped
to spot the problem before Firefox 3 was beta-released, which
would have avoided public embarrassment, while leading the
Firefox developers to focus on designing a better SSL warn-
ing system.

5.2.3 Scareware Defenses
An unfortunate consequence of the results we have ob-

tained is that scareware – the tactic of coercing victims into
installing fake anti-virus or anti-spyware mechanisms that in
fact contain attack code – appears like a very viable strategy

for malicious entities. While this result is not surprising, our
current work helps quantify the strength of the psychologi-
cal bias we have to combat when devising defenses against
scareware. The more convincing the messaging chosen by
the attacker, the more likely the user is to tolerate “odd”
behavior from the software installed, so long as the user be-
lieves that the behavior is the cost of being protected from a
potential risk. Figuring out how to counter this bias opens
a whole new avenue of research.

5.2.4 Public Policy Applications
Beyond the software realm, the study seems to confirm

that, by calling on people’s fears, one may improve the psy-
chological acceptability of any action typically considered as
annoying. This shows why Schneier’s “security theater” [32]
may actually indirectly contribute to security, albeit in a dif-
ferent realm than what it is supposed to originally protect.
While the security measures deployed in airports may be
very ineffective against people managing to smuggle danger-
ous materials onboard an airplane, they help pacify the vast
majority of the population that has to stand in line, often
times in uncomfortable positions. In other words, these secu-
rity measures, however questionable they may be in terms of
actual protection provided, are likely effective at performing
crowd control, which in turn improves the overall security of
the environment. It is likely that similarly long lines and in-
trusive procedures within airports may not garner the same
level of compliance. Within the context of security, our re-
sults corroborate Langer et al.’s results showing that people
tend to be compliant with requests when given a rationale,
rational or not. However, our results diverge from Langer et
al.’s when security is not related to the request [21].

5.3 Caveats
We collected data from a total of 800 participants in our

experiment. Of these, a total of 189 cheated by submitting a
response without reaching the end of our document. Forty
of these cheaters submitted responses without ever reach-
ing the first page of the document. During our first cohort
of 400 participants, where we examined the security condi-
tions, we examined our web server logs and discovered that
55 additional participants had begun our task but chose not
to submit a response. Unfortunately, we cannot determine
the conditions to which these 55 were assigned. We do know
that all 455 were randomly assigned to one of the the four
initial conditions. However, it is possible that participants
in one of these conditions was more likely to return the task
incomplete than participants in the other conditions. But
given that there were no significant differences regarding how
the remaining 400 participants were split between the four
groups, we find this explanation unlikely. At the same time,
given the lopsided demographic data that we gathered from
the exit survey, it is likely that some self-selection bias im-
pacted our study.

We recruited our second cohort of 400 participants almost
three weeks after finishing collecting data from our first co-
hort. Because all eight conditions were not assigned in par-
allel, and because we did not think to run a second control
condition in the second cohort, it is possible that our two
cohorts came from two exogenous populations. While this
is possible, we find it highly improbable given that the de-
mographic data did not differ significantly between the two
cohorts.

5.4 Future Work
In this paper we highlighted some interesting initial find-

ings with regard to users’ tolerance of security delays. We
believe that studies in this area are a crucial missing step
in the software development process as well as in the com-
puter security community as whole. A security mitigation
may solve a specific security problem, but if users are un-
willing to accept the time cost associated with it, it has not
solved the problem. However, our study was not without
its caveats. We have several future experiments planned to
refine our results and to pursue new questions in this area.

5.4.1 Determining Maximum Tolerance
In this experiment we showed that those in the primed

condition were no more likely to cheat than those in the
control condition. However, differences may still exist with
regard to how much of a delay participants will tolerate. We
have several experiments planned to examine these upper
bounds. In one experiment, we expect to randomly vary
the amount of time it takes for the pages to load (though
remaining constant on a per-participant basis). This will
allow us to use a regression to calculate the upper limit of
how long participants are willing to wait in each condition.

In another experiment, we expect to increase the number
of pages in the document by several orders of magnitude.
By making the document unbearably long, everyone will be
forced to abandon the task at some point. We will measure
the point at which participants abandon the task in reference
to their randomly assigned condition.

5.4.2 Latency vs. Bandwidth
The security mitigations that we modeled in this exper-

iment are high latency in nature: participants were inter-
rupted and had to pause their current task until the miti-
gation had completed running. Once complete, participants
were free to resume their task at full speed until they were
interrupted again. Other types of security mitigations are
high bandwidth in nature: users are not interrupted, but the
speed at which they can perform their tasks is noticeably de-
creased. We expect to perform experiments in this area as
well, in order to further explore the types of slowdowns that
are likely to be tolerated.

One particular example is the Tor project. Tor is an
anonymous proxy network that uses onion routing [10]. One
disadvantage of onion routing is that the level of privacy is
directly proportional to the number of hops that packets
must traverse. Obviously, this means that privacy comes at
a time cost. This creates profound design decisions for Tor’s
designers when it comes to specifying default configurations.
However, these decisions can be made easier with a better
understanding of how much delay users are willing to tol-
erate in the name of increased privacy. Köpsell performed
a similar study on user tolerance of delays when using the
AN.ON anonymous network and found a linear relationship
between participant fall-off and increases in delay times [20].
However, in his experiment, it is unclear whether the study
participants understood that the delay was correlated with
an increase in privacy.

6. ACKNOWLEDGMENTS
This work was supported by NSF grant CT-0830945. The

authors would also like to thank Lorrie Cranor and Erin
Krupka for their input during the early stages of this work.

7. REFERENCES
[1] A. Acquisti. Privacy in Electronic Commerce and The

Economics of Immediate Gratification. In Proceedings
of the 5th ACM Conference on Electronic Commerce,
pages 21–29. ACM, 2004.

[2] A. Acquisti. Nudging Privacy: The Behavioral
Economics of Personal Information. IEEE Security
and Privacy, 7(6):82–85, 2009.

[3] F. Asgapour, D. Liu, and L. J. Camp. Risk
communication in computer security using mental
models. In the 2007 Workshop on the Economics of
Information Security (WEIS), Pittsburgh, PA, 5-6
June 2007.

[4] E. Berman and L. Heger. Scanners Help Economy by
Warding Off Fear of Flying.
http://www.cnn.com/2010/OPINION/02/08/Berman.

terrorism.scanners/index.html, February 8 2010.

[5] J. Brustoloni and R. Villamaŕın-Salomón. Improving
Security Decisions with Polymorphic and Audited
Dialogs. In Proceedings of the 3rd Symposium on
Usable Privacy and Security, pages 76–85. ACM, 2007.

[6] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in The Real World. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and
Implementation, pages 232–244, New York, NY, USA,
2003. ACM.

[7] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, Q. Zhang, and
H. Hinton. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proc. 7th
USENIX Security Conference, pages 63–78, San
Antonio, Texas, January 1998.

[8] L. Cranor and S. Garfinkel. Security and Usability:
Designing secure systems that people can use. O’Reilly
Media, Inc., 2005.

[9] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A
flexible information flow architecture for software
security. In ISCA ’07: Proceedings of The 34th Annual
International Symposium on Computer Architecture,
pages 482–493, New York, NY, USA, 2007. ACM.

[10] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The Second-Generation Onion Router. In Proceedings
of the 13th USENIX Security Symposium, August
2004.

[11] M. Dowd and A. Sotirov. How to impress girls with
browser memory protection bypasses. In BlackHat
Briefings Las Vegas, 2008.

[12] S. Egelman, L. F. Cranor, and J. Hong. You’ve been
warned: An empirical study of the effectiveness of web
browser phishing warnings. In CHI ’08: Proceeding of
The 26th SIGCHI Conference on Human Factors in
Computing Systems, pages 1065–1074, New York, NY,
USA, 2008. ACM.

[13] H. Etoh. GCC Extension for protecting applications
from stack-smashing attacks (ProPolice).
http://www.trl.ibm.com/projects/security/ssp/,
2003.

[14] D. F. Galletta, R. Henry, S. McCoy, and P. Polak.
Web site delays: How tolerant are users? Journal of
the Association for Information Systems, 5(1), 2004.

[15] J. Grossklags, N. Christin, and J. Chuang. Secure or

insure? A game-theoretic analysis of information
security games. In Proceedings of the 2008 World
Wide Web Conference (WWW’08), pages 209–218,
Beijing, China, Apr. 2008.

[16] C. Herley. So Long, and No Thanks for The
Externalities: The rational rejection of security advice
by users. In NSPW ’09: Proceedings of The 2009 New
Security Paradigms Workshop, pages 133–144, New
York, NY, USA, 2009. ACM.

[17] M. Jakobsson. Experimenting on Mechanical Turk: 5
How Tos. http://blogs.parc.com/blog/2009/07/
experimenting-on-mechanical-turk-5-how-tos/,
July 2009.

[18] R. W. M. Jones and P. H. J. Kelly.
Backwards-Compatible Bounds Checking for Arrays
and Pointers in C Programs. In Distributed Enterprise
Applications, pages 255–283, 1997.

[19] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing User
Studies with Mechanical Turk. In CHI ’08: Proceeding
of The Twenty-Sixth Annual SIGCHI Conference on
Human Factors in Computing Systems, pages 453–456,
New York, NY, USA, 2008. ACM.

[20] S. Köpsell. Low latency anonymous communication -
how long are users willing to wait? In G. Müller,
editor, Emerging Trends in Information and
Communication Security (ETRICS), volume 3995,
pages 221–237, 2006.

[21] E. Langer, A. Blank, and B. Chanowitz. The
Mindlessness of Ostensibly Thoughtful Action: The
Role of “Placebic” Information in Interpersonal
Interaction. Journal of Personality and Social
Psychology, 36(6):635–642, 1978.

[22] G. Loewenstein and E. Haisley. The Economist as
Therapist: Methodological ramifications of ‘light’
paternalism. In A. Caplin and A. Schotter, editors,
The Foundations of Positive and Normative
Economics: A Handbook, pages 210–245. Oxford
University Press, USA, 2008.

[23] S. McCamant and G. Morrisett. Evaluating SFI for a
CISC architecture. In 15th USENIX Security
Symposium, pages 209–224, Vancouver, BC, Canada,
August 2–4, 2006.

[24] Microsoft Corporation. IE8 Security Part 1: DEP/NX
Memory Protection. http://blogs.msdn.com/ie/
archive/2008/04/08/ie8-security-part-I_3A00_

-dep-nx-memory-protection.aspx, 2008.

[25] S. Milgram. Behavioral Study of Obedience. Journal
of Abnormal and Social Psychology, 67:371–378, 1963.

[26] F. F.-H. Nah. A study on tolerable waiting time: how
long are web users willing to wait? Behaviour &
Information Technology, 23(3):153–163, 2004.

[27] H. Ozdoganoglu, T. Vijaykumar, C. E. Brodley, B. A.
Kuperman, and A. Jalote. SmashGuard: A Hardware
Solution to Prevent Security Attacks on the Function
Return Address. IEEE Transactions on Computers,
55:1271–1285, 2006.

[28] PaX Project. Address space layout randomization.
http://pageexec.virtualave.net/docs/aslr.txt,
Mar 2003.

[29] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle:
A defense against heap-spraying code injection
attacks. In Proceedings of the Usenix Security

Symposium, August 2009.

[30] J. Ross, A. Zaldivar, L. Irani, and B. Tomlinson. Who
are the Turkers? Worker Demographics in Amazon
Mechanical Turk. Technical Report
SocialCode-2009-01, University of California, Irvine,
2009.

[31] B. Schneier. The Psychology of Security.
Communications of the ACM, 50(5):128, 2007.

[32] B. Schneier. Is Aviation Security Mostly for Show?
http:

//www.cnn.com/2009/OPINION/12/29/schneier.air.

travel.security.theater/index.html, December
2009.

[33] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and
L. F. Cranor. Crying Wolf: An Empirical Study of
SSL Warning Effectiveness. In Proceedings of the 18th
USENIX Security Symposium, 2009.

[34] R. Thaler and C. Sunstein. Nudge: Improving
decisions about health, wealth, and happiness. Yale
University Press, New Haven and London, 2008.

[35] J. Tsai, S. Egelman, L. Cranor, and A. Acquisti. The
Effect of Online Privacy Information on Purchasing
Behavior: An experimental study. Information
Systems Research, 2010, Forthcoming.

[36] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation. In
SOSP ’93: Proceedings of The Fourteenth ACM
Symposium on Operating Systems Principles, pages
203–216, New York, NY, USA, 1993. ACM.

