
Towards Understanding Algorithmic Factors Affecting
Energy Consumption: Switching Complexity,
Randomness, and Preliminary Experiments

Ravi Jain
jain@docomolabs-

usa.com

David Molnar
dmolnar@gmail.com

Zulfikar Ramzan
ramzan@docomolabs-

usa.com

ABSTRACT
Mobile devices consider energy to be a limiting resource.
Over the past decade significant research has gone into how
one can reduce energy consumption at the hardware level,
network protocol level, operating system level, and compiler
level. In almost all algorithm analysis, a single resource
such as time or communication is often taken as a proxy for
energy. We address this problem by defining an algorithmic
model for energy, designing algorithm variants that reduce
energy cost in this model, and then performing preliminary
experiments to test the model.

Our starting point is an algorithmic energy model inspired
by work from the compilers community [26]. Augmenting
and simplifying this model motivates the need to consider
an algorithm’s “switching” complexity; this measure cap-
tures the extent to which one switches between different
functional units during execution. We carry out preliminary
experiments on the Itsy pocket computer, which contains a
StrongARM SA-1100 processor running Linux, to compare
“high-switch” versions of bubble sort and other algorithms
to optimized “low-switch” versions. Our preliminary results
show that switching does not appear to affect energy con-
sumption at the algorithmic level.

We then look at a factor that does not appear to have been
studied, namely the cost of generating (pseudo)random bits.
Derandomization is a goal in cryptography and complexity
theory. To our knowledge the energy cost of randomness
itself has not been studied. Nonetheless, many mobile pro-
tocols and algorithms might utilize randomness, for exam-
ple to handle contention resolution, generate cryptographic
keys, or to accomplish efficient sorting. We consider three
common mechanisms for generating randomness: the stan-
dard C library random number generator, and the Linux
/dev/random, and /dev/urandom generators. We perform
tests that compare the energy consumed by these genera-
tors compared to the cost of performing basic arithmetic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIALM-POMC’05,September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-092-2/05/0009 ...$5.00.

instructions. We use Quicksort as an example of a classic
basic application-level algorithm to understand the energy
cost of randomness, and compare the energy consumed by
randomized Quicksort to standard Quicksort. Our prelimi-
nary results show that generating randomness does in fact
incur a significant energy cost, and /dev/random is the most
expensive of the three mechanisms.

We conclude that understanding energy consumption at
the algorithmic level is an important but overlooked area
of investigation, and discuss the implications of our results.
We end with directions for for further work.

Categories and Subject Descriptors: F.2.3 [Analysis
of Algorithms and Problem Complexity]: Tradeoffs between
Complexity Measures

General Terms: Algorithms, Experimentation, , Measure-
ment, Theory.

Keywords: Switching Cost, Energy Measurement, Ran-
domness Cost.

1. INTRODUCTION
Energy is a critical resource for battery-powered mobile

wireless devices. In fact, since the CPU speed, bandwidth,
and storage available to such devices are increasing rapidly,
but battery capacity is increasing at the rate of only a few
percent per year, it is likely that energy will be the most
critical resource in future devices, and an energy bottleneck
appears to be looming. It is thus important to study energy
consumption, and ways to reduce it, at all system levels.

We want a method that will yield results independent of
particular applications. Therefore we focus on the energy
complexity of algorithms. This is analogous to the manner
in which the time consumption (e.g., in terms of CPU opera-
tions) of applications has been studied by looking at the time
required for basic algorithms such as sorting, searching, and
so on. Obviously, an application’s energy consumption is
not entirely reflected in the sum of the energy consumption
of its basic algorithms, but studying an algorithm’s energy
consumption is a useful way to partition the problem.

To our knowledge, relatively little work focuses on un-
derstanding energy consumption at the algorithmic level.
There has, however, been a great deal of work over the past
decade on ways of reducing energy at various other system
levels; e.g., hardware, operating system, network protocol,
and compiler levels. We use this work to guide our study of
algorithmic-level energy consumption. Clearly, there is no

such thing as an algorithmic “level” in the computer organi-
zation sense; algorithms are used at all levels. When we say
“algorithmic level” we mean that we focus on the methods
used for analysis and creation of new algorithms. In this
paper, we will also focus on staple algorithms: sorting, gen-
erating random numbers, and the like. The main previous
work of which we are aware is Naik and Wei [7], who com-
pare, as we do, several different algorithms for the same task
by their energy consumption. Naik and Wei explain their
results, however, by appealing to smaller constant factors in
time cost hidden by the traditional big-Oh notation; we go
further to investigate factors beyond time cost.

To start our study of energy consumption at the algorith-
mic level, we look at the way time consumption has been
studied as an analogy. Like time, an algorithm’s energy
consumption is not a fundamental quantity, it is the quan-
tity that we want to estimate. It is determined by funda-
mental operations encoded in the algorithm itself, such as
CPU operations. The CPU operations themselves can be
represented at various levels, ranging from bit-level boolean
operations to complex assembly-level instructions such as
“Fetch and Add.” What level of abstraction should we use?
Thus we require a model that is abstract enough to be
tractable, yet reasonably accurate in the sense that it al-
lows one to compare the energy consumption of different
algorithms, particularly in an asymptotic sense. For time, a
model that has become widely accepted is the RAM model
of computation [22]. Indeed, the analysis of time and space
complexity at the algorithmic level, particularly asymptotic
analysis and the big-Oh notation, is an essential part of the
toolkit of theoreticians and practitioners alike.

Our principal goal in this paper is to try to identify some
of the factors that would be important to consider for an
algorithmic energy model, and to quantify their importance.
We stress that the current study is preliminary; we do not
claim to have the final model for the job. Instead, we show
how such a model could be defined and measured against
experimental evidence.

Clearly the number of CPU operations is an important
factor in an algorithm’s energy cost. While I/O opera-
tions are typically ignored when estimating the time re-
quired for an algorithm, they cannot be ignored for energy.
The ratio between the cost to communicate a single bit and
the cost of executing a single instruction can be as high
as 1000 to 1. Therefore, many researchers focus on algo-
rithms that minimize communication in order to minimize
energy, and neglect computation cost. Recently, however,
Barr and Asanovic̀ analyzed the issue of compressing data
before sending it. They found that the amount of com-
putation may outweigh the savings in communication [4].
Through extensive experimentation, they showed that both
communication and CPU operations must be considered to
reduce total energy cost.

More generally, energy consumption involves a compli-
cated tradeoff between several factors, including CPU oper-
ations, memory accesses, I/O (and communication) opera-
tions, and others. Using any one factor alone, such as time,
as a proxy for energy, is likely to result in a poor estimator.
Even using two factors, such as time and communication,
may lead us astray if another factor contributing to energy
consumption is dominant.

To account for and understand the impact of different fac-
tors we need a model of algorithmic energy complexity that

reflects all significant energy-consuming components of the
device architecture. At the same time, the kinds of tradeoffs
we make in algorithms are not necessarily the kind made in
other layers, such as the MAC, compiler optimization, or OS
layers. Therefore, some factors may not, in fact, be useful
for algorithm design.

We start with previous work on energy-optimizing com-
pilers that uses an instruction-level model based on the Har-
vard architecture; the Harvard architecture is similar to
the so-called von Neumann architecture except that it as-
sumes separate pathways connecting the CPU to instruc-
tion memory and to data memory. Steinke et al. [26] verify
this instruction-level model empirically on the ARM7TDMI
platform. In section 3 we augment the model to include the
effect of I/O and simplify it to ignore the effect of differences
between consecutive values that are sent on the pathways;
we call the result the Augmented Simplified Harvard Archi-
tecture (ASHA) model.

It is possible to show that ASHA is theoretically well-
behaved, and we can derive “energy” analogues for various
fundamental time-complexity theorems (e.g., gap and speed-
up theorems) using classical proof techniques. We do not
dwell on this aspect of ASHA in this paper. Instead, we
focus on our preliminary experiments to determine which
factors, other than CPU and I/O operations, significantly
contribute to energy consumption.

One of the energy factors that has been studied previously
is the notion of switching cost, namely the energy consumed
when switching between one functional unit to another. We
study this cost in an experimental setup on the Itsy pocket
computer which contains a StrongARM SA-1100 processor
running at 59 MHz [5]. Our initial experiments indicate that
while this cost may be important at lower system levels, it
does not seem significant at the algorithmic level.

In contrast, the energy cost of generating random bits has
not been systematically considered in depth. Randomness
has proven to be a powerful tool for developing efficient al-
gorithms as well as analyzing them, particularly distributed
algorithms. One important use of randomness in mobile
wireless devices is in network protocols which use backoff al-
gorithms to resolve contention. Another is for cryptographic
functions, such as key generation. In fact, there has been
substantial prior work focused on developing energy-efficient
network protocols and algorithms that use randomness as a
fundamental building block. We carry out some prelimi-
nary experiments in our testbed to quantify the energy cost
of randomness for a variety of random number generators,
and find it to be a significant factor.

In summary, our contributions in this paper are as follows.
We argue that understanding energy consumption at the al-
gorithmic level is an important but overlooked area in the
search to find ways to mitigate the energy bottleneck in mo-
bile wireless devices. Based on previous experimental work
in the compilers community, we introduce an initial algo-
rithmic model of energy complexity, ASHA. We then focus
on studying the important factors that contribute to the
energy consumed at the algorithmic level, and carry out ex-
periments to quantify them. We find one “negative” result,
in the sense that we show that switching between functional
units, which has been shown to be significant at the com-
piler level, is in fact not significant for algorithm design, at
least in our experiments on the Itsy pocket computer. We
also find one “positive” result, which is that the energy cost

of generating random bits is quite significant and should not
be ignored when designing randomized algorithms. We be-
lieve that these results, as well as our approach, can form
the foundation for a deeper and broader study of the factors
affecting energy consumption in mobile wireless devices.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 motivates the need for
studying switching complexity via a a model that simplifies
and augments existing work in the compilers community.
Section 4 expounds on two algorithmic factors in energy
consumption: switching complexity and randomness. Sec-
tion 5 describes our experimental testbed and methodology,
as well as the specific experiments we ran. Section 6 dis-
cusses the results from our experiments. Finally, section 7
makes concluding remarks.

2. RELATED WORK
Work on improving the energy consumption on embed-

ded devices has been done at four levels: the logic design
level, the processor level, the operating system level and the
compiler level. Due to space limitations, and since there are
numerous papers discussing these topics (e.g., see [1, 3, 9,
10, 11, 13, 18, 25, 29, 30, 31] and the references therein) we
omit a discussion of the work on reducing energy complex-
ity at these levels in the paper. In addition, a considerable
amount of work has been done in reducing energy at vari-
ous levels of the networking protocol stack. We will also not
discuss this work here due to space limitations, but refer the
reader to some recent papers and references therein [16, 6,
4, 28]. This section discusses some other work that is more
germane to our study of algorithmic energy complexity.

Time-Energy Cost Models. Martin [20] sought to de-
velop a complexity theory of energy. He argues that an over-
all energy-time cost measurement for an algorithm should be
E×t2 (where E is the energy used and t is the time used) as
opposed to E× t (which others have used). The reasoning is
as follows. Time is directly related to voltage in that if one
reduced the voltage in a processor by a certain factor, than
the amount of time needed for execution would essentially
go up by that same factor. Energy, on the other hand, is di-
rectly proportional to the square of the voltage. So, suppose
you had two algorithms A1 and A2 where the time required
by A1 is twice that required by A2, but the energy consumed
by A1 is half that consumed by A2. According to the mea-
sure E × t, these algorithms have equivalent cost. But, if
you halve the voltage on the machine running A2, then both
A1 and A2 would run in the same amount of time. However,
the energy consumed by A2 would go down by a factor of 4
(because of the quadratic relationship between energy and
voltage). Martin left open the question of how one could
treat energy as a complexity-theoretic resource at the algo-
rithmic level. Further, he did not consider factors beyond
time, as we have here. Our study follows on our preliminary
theoretical investigation, which considered an “augmented
Turing Machine” model for energy cost and proved an en-
ergy hierarchy theorem for augmented Turing Machines [15].
The augmented Turing Machine model, however, is far re-
moved from practical implementation.

3. THE AUGMENTED SIMPLIFIED HAR-
VARD ARCHITECTURE (ASHA) MODEL

This section motivates the consideration of switching com-
plexity as an algorithmic factor that might affect energy con-
sumption. We begin by describing a Harvard-architecture
based energy model due to Steinke et al. [26], hereafter re-
ferred to as the SKWM model. This model, which extends
the model of Tiwari et al. [27], was motivated by work on
energy-optimizing compilers. We consider augmenting the
model to take I/O considerations into account since these
play an important factor in energy consumption. Since the
SKWM model is compiler oriented, it is difficult to reason
about it at the algorithmic level. Therefore, we make a num-
ber of seemingly reasonable simplifying assumptions, which
suggests three important algorithmic factors for understand-
ing power consumption: time complexity, I/O complexity,
and switching complexity. The last is “non-traditional,” and
captures the extent to which an algorithm might switch be-
tween using different functional units in a microprocessor.

3.1 Preliminaries
The SKWM model assumes a Harvard architecture for

the underlying processor (though, it trivially adapts to von
Neumann architectures), and considers the following factors:

1) Actual instructions that could be executed: ex-
ecuting a given instruction incurs a base cost. 2) Different

instruction schedules: a pair of consecutive instructions
using different functional units is likely to consume more
energy than a pair using the same functional unit. This
is due to the fact that functional units may be deactivated
when not in use, thereby reducing the energy consumption.
3) Memory hierarchy: If a system includes an off-chip
memory in addition to an on-chip memory, then placement
in memory can impact energy (since loading from off-chip
memory is likely to consume more energy than loading from
on-chip memory). 4) Bit toggling on busses: Energy con-
sumption increases with the number of bits toggled on the
bus.

The impact of each of these factors are termed the pa-
rameters of the energy model. These parameters have to
be derived experimentally on a given processor, perhaps by
running sufficiently many code samples.

To specify the model in more detail, we introduce some
notation. For a bit string x, let w(x) denote its Hamming
weight; i.e., the number of 1’s in x. We will weight w(x) with
parameter αi. If x and y are two bit strings of the same
length, then h(x, y) denotes the Hamming distance; i.e.,
h(x, y) = w(x⊕y). We will weight h(x, y) with parameter βi.
If x represents an instruction, we denote by BaseCPU(x)
and BaseMem(x) the base costs associated with the execu-
tion of x within the CPU and memory respectively. Finally
we denote by FUChange(x, y) the cost associated with ac-
tivating / deactivating a functional unit if x is executed just
prior to y. Since these last three functions represent actual
costs, we need not weight them. Now, there are four parts
to the SKWM model: Ecpu instr – the instruction-dependent
costs inside the CPU; Ecpu data – the data dependent costs
inside the CPU; Emem instr – instruction dependent costs in
the instruction memory; and Emem data – data-dependent
costs in the data memory. Finally, SKWM sums these com-
ponents to model total energy consumption:

Etotal = Ecpu instr + Ecpu data + Emem instr + Emem data.

We can now compute energy consumption for a sequence of
m instructions. We assume that the ith instruction Instri

(1 ≤ i ≤ m), located at address IAddri, is broken up into
four components: an opcode (denoted Opcodei); t regis-
ter locations (denoted Regi,1, . . . , Regi,t); t Register values
(denoted RegV ali,1, . . . , RegV ali,t); and s immediate values
(denoted Immi,1, . . . , Immi,s). Now, we can write:

Ecpu instr =
m∑

i=1

BaseCPU(Opcodei)

+ FUChange(Instri−1, Instri)

+ α1 × w(IAddri)

+ β1 × h(IAddri−1, IAddri)

+
s∑

j=1

(α2 × w(Immi,j)

+ β2 × h(Immi−1,j , Immi,j))

+

t∑

k=1

(α3 ×w(Regi,k)

+ β3 × h(Regi−1,k, Regi,k))

+

t∑

k=1

(α4 ×w(RegV ali,k)

+ β4 × h(RegV ali−1,k, RegV ali,k))

The SKWM model computes the data-dependent CPU costs
when making n data accesses. These costs depend on the ith

data address and data item (denoted DAddri and Datai re-
spectively), as well as the direction dir depending on whether
a read or write is occurring.

Ecpu data =
n∑

i=1

α5 × w(DAddri)

+ β5 × h(DAddri−1, DAddri)

+ α6,dir × w(Datai)

+ β6,dir × h(Datai−1, Datai)

Next, the SKWM model computes the instruction depen-
dent costs in the instruction memory. Here we denote by
Word widthi the bit width of the ith instruction.

Emem instr =
m∑

i=1

BaseMem(InstrMem,Word widthi)

+ α7 × w(IAddri)

+ β7 × h(IAddri−1, IAddri)

+ α8 × w(IDatai)

+ β8 × h(IDatai−1, IDatai)

Finally, SKWM computes the data-dependent memory costs:

Emem data =
n∑

i=1

BaseMem(DataMem,Word widthi)

+ α9 × w(DAddri)

+ β9 × h(DAddri−1, DAddri)

+ α10,dir × w(Datai)

+ β10,dir × h(Datai−1, Datai)

Augmenting the SKWM Model. We can augment the
SKWM Model to incorporate additional I/O devices. To be
general, we can imagine that the underlying processor has a
Harvard architecture, but augmented to include I/O devices
– as is depicted in fig. 1.

Data

Cache

Instruction

Cache

ControllerALU

D
a

ta

Control +

Address

Control

Status

Instruction

Memory

I/O Device

I/O Device

Status/

Control

Figure 1: The I/O Augmented Harvard Architecture

Assume that we have ` I/O devices; BaseIO(k, dir) de-
notes the base cost of the I/O device on a single operation
for 1 ≤ k ≤ `. Suppose that r I/O device calls are made,
and let D(i) denote the I/O device associated with the ith

call for 1 ≤ i ≤ r. We further denote by IOAddri the ad-
dress used to specify the I/O device – this is natural for
memory-mapped I/O; however, in the case of non-memory
mapped I/O, there must be some mechanism (such an us-
ing dedicated I/O instructions in the processor) to specify
which device is being used. In either case, some informa-
tion in the form of a bit string is needed for this purpose.
In general, IOAddri will be used to denote this bit string.
Finally, we denote by IODatai the data associated with the
ith I/O call. Now, we can model the energy consumed by
I/O devices as follows:

EIO data =
r∑

i=1

BaseIO(D(i), dir(i))

+ α11 × w(IOAddri)

+ β11 × h(IOAddri−1, IOAddri)

+ α12,dir ×w(IODatai)

+ β12,dir × h(IODatai−1, IODatai)

Finally, in the augmented model, we have:

Etotal = Ecpu instr + Ecpu data

+Emem instr + Emem data + EIO data

3.2 Simplifying the Augmented SKWM Model
The SKWM model is fairly complex from an algorith-

mic perspective, especially since it considers a variety of
parameters. Because the model uses various measures re-
lated to Hamming weights and distances, it is not clear, for
example, how to reason about this model when we do not
know a-priori the data on which an algorithm operates or
the memory addresses accessed. We propose an Augmented
Simplified Harvard Model (ASHA) that neglects some of the
factors that make analysis difficult. This is akin to how com-
plexity theorists have ignored constant factors in time and
space complexity – while the results are less accurate, the
models have become widely used and are still “good enough”

to provide insight into how algorithms perform with respect
to the relevant performance metrics.
The ASHA Model. In the ASHA model, we only take into
account three factors: 1) the base cost for the instruction –
denoted BaseCPU(·)); 2) the cost associated with switching
between functional units – denoted FUChange(·, ·); and 3)
the cost associated with I/O calls – denoted BaseIO(·, ·).
We can now do simpler computations:

E
′

cpu instr =
m∑

i=1

BaseCPU(Opcodei)

+ FUChange(Instri−1, Instri)

E
′

IO data =
r∑

i=1

BaseIO(D(i), dir(i))

And finally, the energy consumption evaluates to:

E
′

total = E
′

cpu instr + E
′

IO data

The simplifications do not end here. In particular, suppose
that we made BaseCPU(·) directly proportional to the time
required for the instruction (multiplied by some constant
factor, call it ρ1). Suppose also that we assume all I/O calls
to have the same cost – call it ρ2. Finally, suppose that
we assume all switches between different functional units
to have the same cost, ρ3 (and that there is no cost if the
functional units are the same). Then, if an algorithm on
an n-bit input executes in T (n) time steps, makes I(n) I/O
calls, and S(n) functional unit switches, we have a far less
complicated expression for energy complexity1:

E
′′

total = ρ1 × T (n) + ρ2 × I(n) + ρ3 × S(n).

Naturally, this expression is considerably simplified. How-
ever, it leverages quantities that algorithm designers may
have already analyzed; namely, the time complexity and
the I/O complexity2. This expression suggests examining a
third quantity: the “switching” complexity S(n). Of course,
factors like whether or not specific branches are taken affect
the complexities. As in the traditional complexity-theoretic
practice, one can measure the worst case, average case, and
possibly the best case for T (n), I(n), S(n).

4. SWITCHING AND RANDOMNESS
We now use sorting as an algorithmic test case to study

the impact of switching complexity. We also consider the
cost of generating randomness in efficient sorting. We note
that Naik and Wei also considered the energy consumption
of different sorting algorithms, including quicksort; we ex-
tend that work by considering switching and randomness
energy cost as well as time cost [7].

1For simplicity, the formula only expresses one I/O device;
we can trivially extend it to multiple devices, at a corre-
sponding increase in the formula’s descriptive complexity.
2With respect to the I/O complexity, one often counts the
number of parallel I/O calls (c.f., [24]). However, we are fur-
ther interested in the actual number of individual calls I/O
devices. For example, if c(n) I/O calls are made and each
call does p parallel I/O operations, then the I/O complexity
for our purposes is p× c(n) whereas the I/O complexity in
the model studied in [24] is c(n).

4.1 Switching Complexity
Analyzing Switching Complexity for Simple Algo-

rithms. We now describe a sample analysis of algorithms
for switching complexity. Refer to Algorithm 1 for a simple
bubble sort example. We use the term “High Switch” for
this version since it has higher switching complexity than
the other version we analyze. We consider the following
functional states: Move, Compare & Branch, ALU, Load,
and Store. We treat Compare and Branch as the same unit
(since for our purposes all compares will lead to a branch);
however, for clarity of exposition in describing the analysis,
we use both terms.

Algorithm 1 Bubble Sort (High Switch)

1: for i = 1 to n− 1 do

2: for j = i + 1 to n do

3: if A[i] > A[j] then

4: temp = A[i]
5: A[i] = A[j]
6: A[j] = temp
7: end if

8: end for

9: end for

In the outer loop we perform the following:

Functional Unit Algorithmic Step
Move (set a value for i)
Compare (is i ≤ n− 1?)
ALU (compute i + 1)
Perform inner Loop
ALU (increment loop counter)
Branch (back to the start of the loop)

In the inner loop we perform the following:

Functional Unit Algorithmic Step
Move (set j = i + 1)
Compare (is j ≤ n?)
Load (obtain value of A[i])
Load (obtain value of A[j])
Compare (is A[i] > A[j]?)
Load (A[i] is assigned temp)
Load ((A[j]) Assign to A[i])
Store (temp into A[j])
ALU (increment j)
Branch (back to start of inner loop)

In the inner loop there are 8 switches (a consecutive pair
of loads occurs twice and we don’t switch between). This
count also incorporate the switch between the branch at the
end and going back to the start of the loop. The outer
loop introduces 6 switches. Again, this count incorporates
the switch between the final branch and the start of the
outer loop. Now, observe that the inner loop is executed
n − (i + 1) + 1 = n − i times and the outer loop executed
n− 1 times. Therefore, the total switching complexity is:

n−1∑

i=1

(8(n− i) + 5) = 4n
2 − 7n− 5

Now, we determine the switching complexity for the other
bubble sort as referred to in Algorithm 2.

Algorithm 2 Bubble Sort (Low Switch)

1: for i = 1 to n− 1 do

2: for j = i + 1 to n do

3: temp1 = A[i]
4: temp2 = A[j]
5: if temp1 > temp2 then

6: A[i] = temp2
7: A[j] = temp1
8: end if

9: end for

10: end for

Start Unit End Unit Switching Overhead

ALU Load / Store 2.2 mA
Multiplier Load / Store 2.5 mA
BarrelShifter ALU 3.3 mA
Register File ALU 3.8 mA
Register File Multiplier 2.1 mA

Table 1: Switching overhead between ARM7TDMI

functional units, given by Steinke et al.

In the outer loop, we perform the following:

Functional Unit Algorithmic Step
Move (set value for i)
Compare (is i ≤ n− 1?)
ALU (compute i + 1)
Perform inner Loop
ALU (increment loop counter)
Branch (back to start)

In the inner loop, the following steps happen.

Functional Unit Algorithmic Step
Move (set j to i + 1)
Compare (is j ≤ n− 1?)
Load (obtain value of A[i])
Load (obtain value of A[j])
Compare (is temp1 < temp2?)
Store (A[i]← temp2)
Store (A[j]← temp1)
ALU (increment loop counter)
Branch (to inner loop start)

Let us analyze the cost. The outer loop introduces 5 switches
(as before) and the inner loop introduces at most 7. There-
fore, the worst-case switching complexity is:

∑n−1

i=1
(7(n −

i) + 5) = (3.5)n2 − (5.5)n − 5. The savings, in terms of
switches, between these two is: (0.5)n2 − (1.5)n.

Impact of Switching Complexity. The next key ques-
tion is how much switching overhead is involved in a typ-
ical processor for mobile devices, such as an ARM7. Such
numbers already exist in the literature when considering the
compiler level. In particular, table 1 provides numbers taken
from the work of Steinke et al. [26].

By itself, however, such “micro”-cost numbers do not tell
us much. We are interested in overall energy consump-
tion; other factors may dominate the switching complex-
ity. Switching complexity may also interact with other de-
sign choices at lower processor levels in ways that are not

predicted by the instruction-to-instruction energy cost. At
lower logic levels, a mechanism like clock gating can be ex-
ploited when there is low switching complexity. Likewise,
energy optimizations associated with turning off parts of
state machines can also be applied. Similarly, the Hamming
distance between consecutive bus values might be smaller
since the use of the same functional unit suggests that in-
struction op-codes will be similar or even identical. At the
processor level, decreasing switching complexity by group-
ing calls to specific I/O devices will save energy since the
devices can stay in a sleep state for a longer period of time.

One approach to quantifying the impact of switching com-
plexity would be to estimate the “switching coefficient” for
the ASHA model, using the methods outlined above. We
decided, however, to try something even simpler as a first
step: compare the total energy consumption of “standard”
algorithms to the consumption of those optimized to have
low switching cost. Our preliminary experiments indicate
that for our testing environment, switching complexity does
not seem to play a role at the algorithmic level for the Itsy
processor. There are several possible reasons for this. First,
switching complexity really matters when a processor is in-
telligent enough to turn off functional units that are not
being used. Second, for switching complexity to be mean-
ingful, the switches might have to be for long durations; e.g.,
spending a lot of time in one functional unit before switch-
ing is what saves time. If the switches happen rapidly, then
it may not make sense to turn off one processor unit.

4.2 Incorporating Randomness
We used sorting as a basic example when describing how

to go about measuring switching complexity. We now use
sorting as an example of the issues in measuring the en-
ergy cost of randomness. Sorting is a fundamental process
used in numerous applications. Bubble sort is fairly slow,
and there are other algorithms that outperform it asymp-
totically; in particular, quicksort is among the fastest algo-
rithms for sorting arbitrary data. Recall that in quicksort a
pivot element is first chosen. The array is arranged so that
all elements smaller than the pivot are placed to its left,
and the remaining elements are placed to its right. For an
n-element array, this step requires O(n) work. Next, quick-
sort is recursively applied to both the portion of the array
before the pivot and the portion after the pivot. See algo-
rithm 3. If these two portions are always the same size, then
there are only O(log n) levels of recursion, and the entire ar-
ray is sorted using only O(n log n) comparisons. However,
if the pivot results in lopsided portions, then more recursive
levels are required. In the worst case, O(n2) comparisons
are required. Thus, the pivot choice is central to achieving
the best possible running time.

Algorithm 3 Quicksort(Array A, index i, index j)

1: Pick pivot index p← {i, i + 1, . . . , j};
2: Partition A around A[p];
3: Let k be the index of the pivot element after partition-

ing;
4: Quicksort(A, i, k − 1);
5: Quicksort(A,k + 1, j);

Therefore, one approach to quicksort involves choosing the
pivot randomly. This is known to yield (2 ln 2) · n log

2
n −

Θ(n) expected comparisons. Also, the random bits used

must be chosen from a reasonably good source. If, for ex-
ample, a linear congruential generator is used, then we may
experience Ω(n2) worst-case behavior [17]. A more general
study on randomized quicksort with a low-entropy random
source may be found in [19]; in particular, as the entropy
of the source decreases, the worst-case running time essen-
tially approaches Ω(n2). Therefore, as we detail in section 5,
much of our experimental effort focuses on quicksort.

Random bits are used to improve the performance of nu-
merous algorithms; see the text of Motwani and Ragha-
van for a wealth of examples [21]. Beyond their algorith-
mic uses, random bits are used in numerous other settings
in computer science. For example, as we intimated above,
cryptographic keys require random bits; further these bits
must be chosen in a way that makes it intractable for an
adversary to learn any information about them. In wire-
less networking, the IEEE 802.11 MAC protocol [14] uses
CSMA/CA (Carrier Sense Multiple Access/Collision Avoid-
ance) as part of its Distributed Coordination Function mech-
anism. A sender wishing to transmit data picks a random
backoff value between 0 and its contention window. Clearly,
one could mount a trivial denial of service attack if the back-
off values can be determined. Therefore, they should be
chosen using a strong (unpredictable) random source.

5. EXPERIMENTS
This section describes the experiments we performed to

measure the energy consumption associated with switching
complexity and randomness generation. We first describe
our experimental set up. Next, we describe experiments to
measure the relevance of switching complexity. Then, we
turn our attention to randomness generation. We begin by
describing several random number generators available on
Linux. Finally, we describe specific experiments. A dis-
cussion of the actual results, and the methodology used to
obtain them, is presented in Section 6

The Experimental Setup. Our experimental testbed con-
sists of a Compaq Itsy handheld pocket computer running
Linux 2.0.30. The Itsy v2 is based on the StrongARM SA-
1100 processor, and has 32MB of DRAM, 32MB of flash
memory, an LCD screen (320x200 pixels grayscale), a touch
screen, audio input and output, a rechargeable lithium-ion
battery, and several serial interfaces. While the Itsy’s fre-
quency is scalable, our experiments were conducted at 59MHz.
An Agilent 6611C power supply is connected to the Itsy; the
power supply is used instead of the battery. For all exper-
iments, we set the power supply to 3.75 V. A National In-
struments SCB-68 breakout box connects to the lines from
the power supply both before and after a 100mΩ resistor
in the Itsy; the resistor is in series with the Itsy battery.
The breakout box is in-turn connected to a National Instru-
ments DAQCard 6036E, which monitors the voltage drop
across the resistor. The DAQCard is a PCMCIA card, and
is connected to a 1.6GHz Pentium Mobile Sony Vaio lap-
top. The laptop ran Windows XP Professional. National
Instruments Measurement & Automation Explorer version
3.0.2.3005 was used to record the power measurements. We
connected to and commanded the Itsy via a serial port from
a separate desktop (an HP desktop with a 3GHz Pentium 4
running Linux version 2.6.3).

All test programs were compiled on the HP desktop using
gcc version 3.3.2; each program put the procesor to sleep for

one second between iterations of the algorithm. See fig. 2 for
a diagram of our experimental setup. For all of our experi-
ments, we derived energy consumption from the power trace
as follows. First, we eliminated samples below 60 mW; this
screened out samples from the processor sleep times. Then
we truncated traces for two programs in the same exper-
iment to the same length; this corrected for the fact that
some traces ran longer than others. Finally, we summed the
power consumed at each trace sample to find the total energy
consumption. In all our experiements, we report relative en-
ergy consumption; the most expensive trace is normalized
to 1 and other traces reported as a fraction of this baseline
cost.

Switching Complexity Experiments. We focused first
on experiments related to switching complexity. The pro-
grams bubble high and bubble low are the two bubble sort
implementations described above; the former has a higher
number of switches, and the latter a lower number. We show
graphs from an example trace of bubble high and bubble low
in fig. 3. We then show the relative energy cost in fig. 5. As
we see, switching appears to have little or no impact.

Itsy
Power
Supply

Breakout

Box

DAQ

Card

Recording

PC

Controlling

PC

Serial

InterfacePCMCIA
Slot

Figure 2: Our Experimental Testbed

In an effort to conduct a more extreme test of the im-
pact of switching complexity, we wrote a program, switches-
slower, that interleaves a sequence of additions and array as-
signment statement. This interleaving is designed to cause
a large amount of “switching” between different processor
units. In contrast, switches-1 computes an equivalent se-
quence of adds and array assignments, but performs all the
add operations before the array assignments; in this sec-
ond case, the switching complexity is low. Both programs

0.0

0.2

0.4

0.6

0.8

1.0

high low

R
el

at
iv

e
E

ne
rg

y

Name

BubbleSort

Figure 4: BubbleSort relative energy consumption.

0 50 100 150 200 250 300 350
−50

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300

350

400

450

Figure 3: Traces from High (on left) and Low (on right) Switch Bubble Sort.

0.0

0.2

0.4

0.6

0.8

1.0

high low

R
el

at
iv

e
E

ne
rg

y

Name

AssignAndAdd

Figure 5: Switching relative energy consumption.

seemed to require the same amount of energy; we show the
results in fig. 5. We recognize that our experimental setup
has a sampling rate too low to see the instantaneous effect of
switching complexity, but we believe that the overall effect
in total energy consumption is more important; our prelimi-
nary experiments do not show a significant savings for lower
switching cost.

Linux Random Number Generators. We conducted our
randomness generation experiments using three random num-
ber generators available on Linux: random() (the standard
C library random number generator), /dev/random, and
/dev/urandom. The standard C library generator is very
simplistic, and not suitable for applications that require
good random bits (e.g., generating cryptographic keys). In
fact, it may not even be suitable for use in a randomized
algorithm. It works by replacing a seed value with a simple
arithmetic transformation of it, and then outputting another
arithmetic transformation of the seed. There is a default
value for the seed, but the seed can be changed by the user.
Both /dev/random and /dev/urandom are character devices
that serve as an interface to the Linux kernel’s random num-
ber generator. They were designed to be used in applica-
tions where strong randomness is required; e.g., cryptogra-
phy. They gather data from a variety of “unpredictable”
system sources; e.g., inter-interrupt timings. This data is
added to an entropy pool which is mixed using a primi-
tive polynomial over GF (2). When actual random bytes are
desired, the MD5 hash function is applied to the entropy
pool. As this happens, the amount of entropy in the pool
is estimated. The key difference between /dev/random and

0.0

0.2

0.4

0.6

0.8

1.0

random urandom stdc

R
el

at
iv

e
E

ne
rg

y

Name

Randomness Generation

Figure 6: Relative cost of randomness sources.

/dev/urandom is that if the estimated entropy in the pool is
less than what the user needs, then /dev/random will block
and wait for the pool to be replenished; on the other hand,
/dev/urandom applies MD5 to the entropy pool again, and
returns an answer. In this sense, /dev/urandom does not
provide the same level of randomness as /dev/random, but
due to the properties of MD5, it is unlikely that an attacker
can exploit this weakness in practice.

Measuring the Energy Consumed by Randomness Gen-

eration. Our first set of experiments were geared towards
understanding the relative cost of generating random bits as
compared to a basic addition operation. The programs std-
crandom 512, std dev random 512, and urandom 512, mea-
sure the cost of reading 512 bytes of randomness at a time
using the standard C library generator, /dev/random, and
/dev/urandom respectively. The results are summarized in
the graph in fig. 6.

Our second set of experiments measured the cost of ran-
domness generation within a common application: sorting.
Recall that quicksort with a randomly chosen pivot can sort
an n-element array using an expected O(n log n) comparison
operations. We first set up twenty-five character arrays, each
containing sixty-four elements, and randomly chose the ele-
ments to fill them. The experiments first assigned elements
to the arrays, and then ran quicksort twenty-five times, once
on each array. These operations were themselves contained
in an infinite while loop, with a one-second sleep between it-
erations. The qsort program used the standard C library de-
terministic quicksort implementation. The exp rqsort itsy
program is based on the same code as the standard C li-

Name Mean (mW) Stddev

sort-base-cost 155.2768 79.1525

qsort 242.8968 37.5129

rqsort 242.4834 34.2327

rqsort-II 242.2659 34.2307

devrqsort 145.2534 32.6342

devrqsort-buf4 146.7216 34.0659

devrqsort-buf8 146.6130 34.0959

devrqsort-buf16 146.5220 33.7784

devrqsort-buf32 146.1758 33.2338

devurqsort 233.3415 47.9378

devurqsort-II 241.9896 39.7807

devurqsort-buf32 246.2699 36.7392

devurqsort-buf32-II 246.1741 36.9452

devurqsort-buf4 247.8152 36.2923

devurqsort-buf4-II 248.2391 38.1438

devurqsort-buf4-III 248.6971 37.1571

devurqsort-buf8 247.4079 37.1755

devurqsort-buf8-II 246.4884 38.3804

Table 2: Quicksort Experiment Data

brary implementation, but replaces the pivot choosing step
with a random pivot choice, using the C standard library
generator to choose the pivot. The devrqsort and devurq-
sort programs are similar, except that the /dev/random and
/dev/urandom generators are used respectively. Finally, to
understand the relative cost of the actual sorting algorithms
versus the cost of assigning elements to the arrays, etc., the
sort base cost program performs the same operations as the
other programs, without doing any sorting. As before, we
took power traces of all programs at a sampling rate of 1000
samples per second, then filtered out samples less than 100
mW and took the mean and standard deviation of the left-
over samples. The results are summarized in table 2.

6. RESULTS AND ANALYSIS
Switching Complexity. Our results do not support the
claim that switching complexity is a significant contributor
to algorithmic energy consumption. We first observed that
the difference between our “high-switch” and “low-switch”
variants of bubble sort was extremely small. The low-switch
variant’s energy consumption was roughly .98 of the high-
switch variant. We then attempted to exaggerate the re-
sults of switching complexity by measuring switches-1 and
switches-slower. As described above, switches-slower pur-
posely interleaves assignment and ALU operations but pro-
duces the same end result as switches-1. Again, we found
that a very small difference in mean energy consumption.

Randomness Generation. In contrast, we observed dif-
ferences due to choice of random number generators. In our
microbenchmarks, we observed that /dev/random took the
longest, while /dev/urandom and the C standard random()
call both took roughly half as long. We did, however, see
little difference between /dev/urandom and the standard C
random() call. See the bar chart in fig. 6. Some of this dif-
ference stems from the different behavior of the generators
when reading “large” amounts of randomness: in particular,
if not enough randomness is available in the kernel’s entropy
pool for a particular read, /dev/random will block and cause
the processor to spin-wait until enough bytes are available.

In the case of quicksort, we measured average power con-
sumption instead of total energy consumption. We found an
initially surprising result: using /dev/random led to lower
average consumption than using /dev/urandom or deter-
ministic quicksort. For example, with no buffering, quick-
sort with /dev/random had a mean energy consumption of
145.2534 mW, while /dev/urandom had a mean energy con-
sumption of 233.3415 mW. Deterministic quicksort, on the
other hand, has a mean energy consumption similar to that
of /dev/urandom. See Table 2 for full data.

We hypothesized that this phenomenon occurs since when-
ever the entropy pool is sufficiently low, /dev/random blocks.
The machine consumes less energy when blocking than when
doing quicksort-related operations. For /dev/urandom, on
the other hand, there is no notion of blocking. Instead, it
computes an MD5 hash of the current entropy pool and re-
turns that. To validate the hypothesis, we ran a separate
test on the Itsy to determine whether /dev/random blocked.
This test involved outputting data to the standard output
(in this case a terminal window on our command PC). We
found that indeed /dev/random blocked before completing
the 25 randomized quicksort calls in the first iteration of the
infinite loop. Of course, /dev/urandom and the C random()
call never blocked.

To see how this might play numerically, consider the fol-
lowing example. Suppose that during peak sorting the Itsy
draws around 300 mW, but while blocking only about 200mW.
The average /dev/random quicksort consumption will be
closer to 200 mW because all it does is block. The /dev/urandom
quicksort, on the other hand, will be closer to 300 mW be-
cause most of its time is spent sorting. Thus, /dev/random
will consume less energy, but will not accomplish nearly as
much. In the microbenchmark tests, however, we are mea-
suring the energy consumed when actually generating ran-
domness; in this case, /dev/random is more expensive. The
upshot is that we believe /dev/urandom to be a better choice
for practical purposes. Its energy consumption is compara-
ble to that of the standard C library generator, but at the
same time it does not suffer from blocking issues. While the
bits it produces are not truly random, they are pseudoran-
dom, so long as the output bits of MD5 are unpredictable
and it hides information about its input bits (note that the
recent hash function collision results [33] do not imply any-
thing about the statistical properties of the hash function).

7. CONCLUSION
There are several possible directions for future work. The

high-level direction is to find a better model for analyzing
the energy cost of an algorithm. Our results suggest that the
ASHA model as we have presented it is not the right model,
because switching cost appears to make only a small differ-
ence in practical energy consumption. Along these lines, we
can continue studying the energy cost of generating random
bits. We can focus on specific application scenarios such as
cryptography or network protocols, and determine the rel-
ative cost of random bit generation within these contexts.
Then we can study the wealth of existing randomized al-
gorithms and determine their “energy” complexity. Finally,
there are many data structures that use randomness. A
study of these with a view towards joint cache, timing, and
randomness effects would also be a promising direction.

Overall, we believe that because energy might become the
resource bottleneck in future applications, it should be stud-

ied at all levels. If algorithm designers are given the tools
to reason about energy complexity, then they can make in-
formed design choices that will have significant impact.

8. ACKNOWLEDGEMENT
We thank Lawrence Brakmo for a number of very helpful

discussions on energy consumption and for his invaluable
help in setting up our experimental testbed. We also thank
the Mobisys and DIALM/POMC anonymous reviewers for
valuable comments that significantly improved our work.

9. REFERENCES
[1] A. Abnous and J. Rabaey. “Ultra-low-power domain

specific multimedia processors,” Proc. VLSI Signal
Processing IX, Nov 1996.

[2] B. Alpern, L. Carter, E. Feig, and T. Selker. “The
Uniform Memory Hierarchy Model of Computation.”
Algorithmica, 12(2/3):72–109. Aug-Sep 1994.

[3] A. Vahdat, C. Ellis, and A. Lebeck. “Every Joule is
Precious: The Case for Revisiting Operating System
Design for Energy Efficiency.” In Proc. 9th ACM
SIGOPS European Workshop, Sep 2000.

[4] K. Barr and K. Asanovic, “Energy Aware Lossless
Data Compression”, Proc. MobiSys 2003.

[5] W. R. Hamburgen, D. A. Wallach, M. A. Viredaz, L.
S. Brakmo, J. F. Bartlett, C. A. Waldspurger, T.
Mann, and K. I. Farkas. “Itsy: Stretching the Bounds
of Mobile Computing.” Computer, 34(4), Apr 2001.

[6] C. F. Chiasserini, P. Nuggehalli, V. Srinivasan and R.
R. Rao, “Energy-Efficient Communication Protocols,”
(Invited), Proc. Design Automation Conf, Jun 2002.

[7] K. Naik and D.S.L. Wei, “Software implementation
strategies for power-conscious systems.” Mobile
Networks and Applications, Volume 6, Issue 3 (June
2001). Pages 291-305. 2001.

[8] M. Dietzfelbinger. “Primality Testing in Polynomial
Time From Randomized Algorithms to “PRIMES Is
in P.”” LNCS Vol. 3000. Springer Verlag, 2004.

[9] F. Douglis, F. Kaashoek, B. Marsh, R. Caceres, K. Li,
and J. Tauber. “Storage Alternatives for Mobile
Computers,” Proc. OSDI 1994.

[10] F. Douglis, P. Krishnan, and B. Bershad, “Adaptive
Disk Spindown Policies for Mobile Computers,” Proc.
USENIX Symposium on Mobile and Location
Independent Computing, 1995.

[11] M. P. Frank. “Reversibility for Efficient Computing,”
Manuscript based on MIT Ph.D. Thesis. Dec 1999.

[12] P. J. M. Havinga. “Mobile Multimedia Systems”
Ph.D. thesis, University of Twente, Feb 2000.

[13] P.J.M. Havinga and G.J.M. Smit. “Design Techniques
for Lower Power Systems,” Journal of Systems
Architecture, Volume 46, Number 1, 2000.

[14] IEEE Standard for Wireless LAN-Medium Access
Control and Physical Layer Specification, P802.11,
1999.

[15] R. Jain, D. Molnar, and Z. Ramzan “Towards A
Model of Energy Complexity for Algorithms.” WCNC
2005.

[16] C. E. Jones, K. M. Sivalingam, P. Agrawal and J. C.
Chen, “A Survey of Energy Efficent Network

Protocols for Wireless Networks,” Wireless Networks,
vol. 7, no. 4, 343-358, July 2001.

[17] H. Karloff and P. Raghavan. “Randomized algorithms
and pseudorandom numbers.” Proc. STOC 1998.

[18] M. Koegst, G. Franke, S. Ruelke, and K. Feske.
“Lower power design of FSMs by state assignment and
disabling self-loops,” Proc. Euromicro 1997. Pages
323–330, September 1997.

[19] B. List, M. Maucher, U. Schöning, R. Schuler.
“Randomized Quicksort and the Entropy of the
Random Number Generator.” Electronic Colloquium
on Computational Complexity Rept 59, 2004.

[20] A. J. Martin. “Towards an Energy Complexity of
Computation,” Information Processing Letters, 77
(2001) 181–187.

[21] R. Motwani and P. Raghavan. “Randomized
Algorithms.” Cambridge University Press, 1995.

[22] C. Papadimitriou. “Computational Complexity,”
Addison-Wesley Publishing Company, (Reprinted with
corrections, 1995.)

[23] Rambus, Inc. http://www.rambus.com.

[24] E. Shriver and M. Nodine. “An introduction to
parallel I/O models and algorithms,” in R. Jain, J.
Werth and J. C. Browne, Input/Output in Parallel
and Distributed Computer Systems, Kluwer, 1996.

[25] M.R. Stan and W.P. Burleson. “Bus-Invert Coding for
Lower-Power I/O.” IEEE Trans. on VLSI Systems,
Volume 3, Number 1, pp 49–58, 1995.

[26] S. Steinke, M. Knauer, L. Wehmeyer, and P.
Marwedel. “An Accurate and Fine Grain
Instruction-Level Energy Model Supporting Software
Optimizations,” Proc. PATMOS 2001.

[27] V. Tiwari, S. Malik, and A. Wolfe. “Power Analysis of
Embedded Software: A First Step Towards Software
Power Minimization,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Volume 2,
Number 4, December 1994.

[28] J. Subramanian, M. Bs and S. R. Murthy, “On Using
Battery State for Medium Access Control in Ad hoc
Wireless Networks,” Proc. Mobicom, 2004.

[29] J. Flinn and M. Satyanarayanan. “Energy-aware
adaptation for mobile applications.” Proc. SOSP 1999.

[30] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat.
“ECOSystem: Managing Energy as a First-Class
Operating System Resource,” Proc. Architectural
Support for Porgramming Languages and Operating
Systems (ASPLOS), 2002.

[31] J. Lorch and A. J. Smith. “Software strategies for
portable computer energy management,” IEEE
Personal Communications Magazine, 5(3):60-73, June
1998.

[32] X. Wang, D. Feng, X. Lai, and H. Yu. “Collisions for
Hash Functions MD4, MD5, HAVAL 128, and
RIPEMD,” Cryptology E-print Archive, report
199-2004. Available from http://eprint.iacr.org.

[33] X. Wang, H. Yu. “How To Break MD5 and Other
Hash Functions,” EUROCRYPT 2005

