
The Program Counter Security Model:

Automatic Detection and Removal of

Control-Flow Side Channel Attacks

David Molnar1, Matt Piotrowski1, David Schultz2, and David Wagner1

1 UC-Berkeley {dmolnar, pio, daw}@eecs.berkeley.edu
2 MIT das@csail.mit.edu

Abstract. We introduce new methods for detecting control-flow side
channel attacks, transforming C source code to eliminate such attacks,
and checking that the transformed code is free of control-flow side chan-
nels. We model control-flow side channels with a program counter tran-

script, in which the value of the program counter at each step is leaked
to an adversary. The program counter transcript model captures a class
of side channel attacks that includes timing attacks and error disclosure
attacks.
Further, we propose a generic source-to-source transformation that pro-
duces programs provably secure against control-flow side channel attacks.
We implemented this transform for C together with a static checker that
conservatively checks x86 assembly for violations of program counter
security; our checker allows us to compile with optimizations while re-
taining assurance the resulting code is secure. We then measured our
technique’s effect on the performance of binary modular exponentiation
and real-world implementations in C of RC5 and IDEA: we found it has
a performance overhead of at most 5× and a stack space overhead of
at most 2×. Our approach to side channel security is practical, gener-
ally applicable, and provably secure against an interesting class of side
channel attacks.

1 Introduction

The last decade has seen a growing realization that side channel attacks
pose a significant threat to the security of both embedded and networked
cryptographic systems. The issue of information leakage via covert chan-
nels was first described by Lampson [19] in the context of timesharing
systems, but the implications for cryptosystem implementations were not
recognized at the time. In his seminal paper, Kocher showed that care-
ful timing measurements of RSA operations could be used to discover
the RSA private key through “timing analysis” [17]. Kocher, Jaffe, and
Jun showed how careful power measurements could reveal private keys
through “power analysis” [18]. Since then, side channel attacks have been

used to break numerous smart card implementations of both symmetric
and public-key cryptography [10, 22, 21, 23]. Later, Boneh and Brumley
showed that a timing attack could be mounted against a remote web
server [9]. Other recent attacks on SSL/TLS web servers make use of bad
version oracles or padding check oracles; remote timing attacks can reveal
error conditions enabling such attacks even if no explicit error messages
are returned [20, 6, 32, 7, 15, 16, 25].

Defending against side channels requires a combination of software
and hardware techniques. We believe a principled solution should extend
the hardware/software interface by disclosing the side-channel properties
of the hardware. Just as an instruction set architecture specifies the be-
havior of the hardware to sufficient fidelity that a compiler can rely on
this specification, for side-channel security we advocate that this architec-
ture should specify precisely what information the hardware might leak
when executing by each instruction. This boundary forms a “contract”
between hardware and software countermeaures as to who will protect
what; the role of the hardware is to ensure that what is leaked is nothing
more than what is permitted by the instruction set specification, and the
role of the software countermeasures is to ensure that the software can
tolerate leakage of this information without loss of security.

Our main technical contribution is an exploration of one simple but
useful contract, the program counter transcript model, where the only
information the hardware leaks is the value of the program counter at
each step of the computation. The intuition behind our model is that it
captures an adversary that can see the entire control flow behavior of the
program, so it captures a non-trivial class of side-channel attacks. This
paper develops methods for detecting such attacks on C programs and
shows how to secure software against these attacks using a C-to-C code
transformation.

We introduce a source-to-source program transformation that takes a
program P and produces a transformed program P ′ with the same input-
output behavior and with a guarantee that P ′ will be program counter
secure. We built a prototype implementation of this transformation that
works on C source code. We applied our implementation to implemen-
tations of RC5 and IDEA written in C, as well as an implementation of
binary modular exponentiation. The resulting code is within a factor of at
most 5 in performance and a factor of 2 in stack usage of untransformed
code (§ 5.1).

Because our transform works at the C source level, we must be careful
that the compiler does not break our security property. We build a static

analysis tool that conservatively checks x86 assembly code for violations
of program counter security. For example, we were able to show that our
transformed code, when compiled with the Intel optimizing C compiler,
retains the security properties.

The program counter model does not cover all side channel attacks. In
particular, data dependent side channels (such as DPA or cache timing
attacks [5]) are not eliminated by our transform. Nevertheless, we still
believe the model is of value. We do not expect software countermeasures
alone to solve the problem of side channels.

In short, we show how to discover and defend against a class of at-
tacks, while leaving defenses against some important attacks as an open
question. Our work opens the way to exploring a wide range of options
for the the interface between hardware and software side channel coun-
termeasures, as formalized by different transcript models. As such, our
work is a first step towards efficient, principled countermeasures against
side channel attacks.

2 A Transcript Model for Side Channel Attacks

We formalize the notion of side information by a transcript. We view
program execution as a sequence of n steps. A transcript is then a se-
quence T = (T1, . . . , Tn), where Ti represents the adversary’s observation
of the side channel at the ith step of the computation. We will then write
Pk(x) to mean the program P running on secret input k and non-secret
input x. Informally, a program is secure if the adversary “learns nothing”
about k even given access to the side-channel transcript produced during
execution of Pk(x) for x values of its choice. Our model can be thought
of as a “single-program” case of the Micali-Reyzin model, in which their
“leakage function” corresponds to our notion of a transcript [24].

The transcript is the way we formalize the contract between hardware
and software. It is the job of hardware designers to ensure that the hard-
ware leaks nothing more than what is specified in the transcript, and the
rest of this paper assumes that this has been done.

We write D ∼ D′ if D and D′ have the same distribution (perfect
indistinguishability). Programs will take two inputs, a key k and an input
x; we write Pk(x) for the result of evaluating P on key k and input x.

Define #Pk(x)#
def
= (y, T), where y = Pk(x) is the result of executing P

on (k, x) and T denotes the transcript produced during that execution.
If P is randomized, Pk(x) and #Pk(x)# are random variables. We abuse

notation and write #Pk# for the map #Pk#(x) = #Pk(x)#. We can
then define transcript security as follows:

Definition 1 (transcript security). A program P is said to be transcript-
secure (for a particular choice of transcript) if for all probabilistic poly-
nomial time adversaries A, there exists a probabilistic polynomial time
simulator S, which for all keys k satisfies SPk ∼ A#Pk#.

3 Program Counter Security: Security Against Certain

Side-Channel Attacks

In the PC model, the transcript T conveys the sequence of values taken
on by the processor’s program counter during the computation. To be
specific, our concrete notion of security is as follows:

Definition 2 (PC-security). A program P is PC-secure if P is transcript-
secure when the transcript T = (T1, . . . , Tn) is defined so that Ti represents
the value of the program counter at the ith step of the execution.

Consequently, in the PC model, the attacker learns everything about the
program’s control-flow behavior but nothing about other intermediate
values computed during execution of the program. In the remainder of
this work, we make two assumptions about the hardware used to execute
the program: first, that the the program text is known to the attacker.
This implies that the program counter at time i reveals the opcode that
was executed at time i. Second, the side-channel signal observed by the
attacker depends only on the sequence of program counter values, e.g.,
on the opcode executed. For example, we assume that the execution time
of each machine instruction can be predicted without knowledge of the
values of its operands, so that its timing behavior is not data-dependent
in any way. Warning: This is not true on some architectures, due to,
among other things, cache effects [5], data-dependent instruction timing,
and speculation.

We stress that our transcript model is intended as an idealization of
the information leaked by the hardware; it may be that no existing system
meets the transcript precisely. Nonetheless, we believe these assumptions
are reasonable for some embedded devices, namely those which do not
have caches or sophisticated arithmetic units. With these assumptions,
PC-security subsumes the attacks mentioned above. Given a transcript
of PC values, the attacker can infer the total number of machine cycles
used during the execution of the program, and thus the total time taken
to run this program; consequently, any program that is PC-secure will
also be secure against timing attacks.

OAEP-Insecure(d, x):

1. (e, y)← IntToOctet(xd mod n)
2. if e then return Error

3. (e′, z)← OAEPDecode(y)
4. if e′ then return Error

5. return z

(a) Näıve code (insecure).

OAEP-Secure(d, x):

1. (e, y)← IntToOctet(xd mod n)
2. y ← Cond(e, dummy value, y)
3. (e′, z)← OAEPDecode(y)
4. return Cond(e ∨ e′, Error, z)

(b) A transformed version (PC-secure).

Fig. 1. Two implementations of OAEP decryption. We assume that each subroutine
returns a pair (e, y), where e is a boolean flag indicating whether any error occurred,
and y is the value returned by the subroutine if no error occurred. The code on the
left is insecure against Manger’s attack, because timing analysis allows to distinguish
an error on Line 2 from an error on Line 3. The code in the right is PC-secure and
hence not vulnerable to timing attacks, assuming that the subroutines are themselves
implemented in a PC-secure form.

4 Example: Error Disclosure Side Channels

Some implementation attacks exploit information leaks from the disclo-
sure of decryption failures. Consider a decryption routine that can return
several different types of error messages, depending upon which stage of
decryption failed (e.g., improper PKCS formatting, invalid padding, MAC
verification failure). It turns out that, in many cases, revealing which kind
of failure occurred leaks information about the key [6, 32, 7, 15, 16, 25].

Näıvely, one might expect that attacks can be avoided if the imple-
mentation always returns the same error message, no matter what kind
of decryption failure occurred. Unfortunately, this simple countermeasure
does not go far enough. Surprisingly, in many cases timing attacks can be
used to learn which kind of failure occurred, even if the implementation
does not disclose this information explicitly [6, 32, 7, 15, 16, 25, 20]. See,
for instance, Fig. 1(a). The existence of such attacks can be viewed as
a consequence of the lack of PC-security. Thus, a better way to defend
against error disclosure attacks is to ensure that all failures result in the
same error message and that the implementation is PC-secure. We show
several similar applications of PC-security in the full paper [26].

Suppose we had a subroutine Cond(e, t, f) that returns t or f ac-
cording to whether e is true or false. Using this subroutine, we propose
in Fig. 1(b) one possible implementation strategy for securing the code
in Fig. 1(a) against error disclosure attacks. If there is an error in Line 1,
we generate a dummy value (which can be selected arbitrarily from the
domain of OAEPDecode) to replace the output of Line 1. If all subrou-

tines are implemented in a PC-secure way and we can generate a dummy
value in a PC-secure way, then our transformed code will be PC-secure
and thus secure against error disclosure attacks.

There is one challenge: we need a PC-secure implementation of Cond.
We propose one way to meet this requirement through logical masking:

Cond(e, t, f):
1. m←Mask(e)
2. return (m ∧ t) ∨ (¬m ∧ f)

Here ¬,∨,∧ represent the bitwise logical negation, OR, AND (respec-
tively). This approach requires a PC-secure subroutine Mask satisfying
Mask(false) = 0 and Mask(true) = 2` − 1 = 11 · · · 12, assuming t and f

are `-bit values. The Mask subroutine can be implemented in many ways.
For instance, assuming true and false are encoded as values 1 and 0, we
could use Mask(e) = (2` − 1)× e; Mask(e) = −e (on two’s-complement
machines); Mask(e) = (e � (` − 1)) ≫ (` − 1) (using a sign-extending
arithmetic right shift); or several other methods. With the natural trans-
lation to machine code, these instantiations of Mask and Cond will be
PC-secure.

4.1 Straight-Line Code is PC-Secure

The key property we have used to show PC-security of code in the pre-
vious section is that the code is straight-line, by which we mean that the
flow of control through the code does not depend on the data in any way.
We now encapsulate this in a theorem.

Theorem 1. (PC-security of straight-line code). Suppose the program P

has no branches, i.e., it has no instructions that modify the PC. Then P

is PC-secure.

Proof. Since P is branch-free, for all inputs x and all keys k the pro-
gram counter transcript T of Pk(x) will be the same. For any adversary
A, consider the simulator S that runs A, outputting whatever A does
and answering each query x that A makes to its oracle with the value
(Pk(x), T). Then SPk ∼ A#Pk# for all k.

In fact, it suffices for P to be free of key-dependent branches. We can
use this to show that some looping programs are PC-secure.

Theorem 2. (PC-security of some looping programs). Suppose the pro-
gram P consists of straight-line code and loops that always run the same

code body for a fixed constant number of iterations in the same order (i.e.,
the loop body contains no break statements and no assignments to the loop
counter; there are no if statements). Then P is PC-secure.

Proof. As before, for all inputs x and all keys k, the program counter
transcript T of Pk(x) will be the same, so we can use the same simulation
strategy.

5 Code Transformation for PC-Security

The examples we have seen so far illustrate the relevance of PC-security,
but enforcing PC-security by hand is highly application-dependent and
labor-intensive. We describe a generic method for transforming code to
be PC-secure. Given a program P , the transformed program P ′ is PC-
secure and has the same input-output behavior as P on all inputs (i.e.,
Pk(x) ∼ P ′

k
(x) for all k, x). It may be surprising that almost all code can

be transformed in this way, but we show in the full paper that this can
be done for any fragment of code where all loops executed for a bounded
number of iterations [26].

Transforming conditional statements. An if statement containing only
assignment expressions can be handled in a fairly simple way. To pro-
vide PC-security, we execute both branches of the if, but only retain
the results from the branch that would have been executed in the orig-
inal program. The mechanism we use to nullify the side-effects of either
the consequent or the alternative is conditional assignment. We have al-
ready seen one way to implement PC-secure conditional assignment using
logical masking and the Cond subroutine. For example, the C state-
ment if (p) { a = b; } can be transformed to a = Cond(m, b, a),
where m = Mask(p). If p represents a 0-or-1-valued boolean variable3,
this might expand to the C code m = -p; a = (m & b) | (~m & a).

Loops. Loops present difficulties because the number of iterations they
will perform may not be known statically, and in particular, the number
of iterations may depend on sensitive data. Fortunately, in many cases a
constant upper bound can be established on the number of iterations. We
transform the loop so that it always executes for the full number of iter-
ations, but the results of any iterations that would not have occurred in
the original program are discarded. A specification of our entire transform
may be found in Appendix A
3 If p is not guaranteed to be 0-or-1-valued, this definition of m does not work. We use
m = !p - 1 instead.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

idea idea−xf idea−hand rc5 rc5−xf exp exp−xf

R
el

at
iv

e
E

x
ec

u
ti

o
n
 T

im
e

Name

Performance Overhead

0.0

0.5

1.0

1.5

2.0

idea idea−xf rc5 rc5−xf exp exp−xf

R
el

at
iv

e
C

o
d
e

S
iz

e

Code Size Overhead

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

idea idea−xf rc5 rc5−xf exp exp−xf

R
el

at
iv

e
S

ta
ck

 S
iz

e

Name

Stack Size Overhead

Fig. 2. The speed, code size, and stack size overhead of our transform, as applied to
modular exponentiation, IDEA, and RC5. The -xf suffix indicates the automatic appli-
cation of our transform, while the -hand suffix indicates a hand-optimized application
of our transform. Values are normalized: the untransformed version of a program takes
unit time by definition, while the transformed version of the same program is shown
with the relative multiplicative overhead compared to the untransformed version.

5.1 Transform Implementation

We applied our transform to implementations of the IDEA and RC5 block
ciphers, which are known to be susceptible to timing attacks unless im-
plemented carefully [14, 12]. We also applied our transform to a simple
binary modular exponentiation implementation built on top of the GNU
Multiprecision Library. We chose x86 as our reference platform due to
its widespread popularity, and we used the Intel C Compiler, Version 8.1
for our performance results. Our tests were run on a 2.8 GHz Pentium 4
running FreeBSD 6-CURRENT (April 17, 2005).

We first optimized our transform by hand on IDEA’s multiplication
routine to determine how fast our transform can be in principle. Our hand-
optimized transformation achieves a factor of 2× slowdown compared to
untransformed code, when both are compiled using the Intel C compiler
with -O3.

We then implemented an automatic C source-to-source transformation
using the C Intermediate Language package [27]. Our implementation was
intended as an early prototype to demonstrate the feasibility of applying
our transformation automatically. With more careful attention, better
performance from an automatic transform may be possible.

Performance results. Our performance results for modular exponentia-
tion, IDEA, and RC5 are presented in Fig. 2. For IDEA, we transformed
only the mul routine, which we identified as the main candidate for tim-
ing and power attacks. For RC5, we performed the transformation on the
rotate routine, for similar reasons. For modexp, we transformed only the
main loop, but did not transform GnuMP library functions.

The performance of untransformed, optimized code is set to 1, and
the performance of transformed code is reported relative to this value;
for example, the bar with height “2” for idea-hand indicates that our
hand-transformed IDEA code took 2 times as long as untransformed code.
We also found that code size increased by at most a factor of 2. Finally,
we considered the stack usage of transformed code; this is the most rele-
vant metric of memory usage for systems without dynamically allocated
memory.

We can see that both our automatic transform is within a factor of 5
in performance of the optimized untransformed code in all cases. Again,
our implementation is a prototype intended to test feasibility; with more
work, more efficient code may be possible. Further, our stack size and code
size increase by at most a factor of 2, showing that the transformed code
may still be reasonable even in constrained environments. Our results
suggest that a fully automatic transformation with slowdown acceptable
for many applications is possible with care.

A static analysis for PC-security. We cannot guarantee that the com-
piler will preserve our transform’s straight-line + restricted-loop guaran-
tee when it generates assembly language. We addressed this problem by
building a simple static checker for x86 assembly code that detects viola-
tions of PC-security. If the compiler does introduce assembly constructs
that violate PC-security, these constructs will be flagged by the checker.
We can then revise the code or improve our transform. Our checker is
sound, but not complete: it will catch all violations of PC-security, but
may also report false positives.

In fact, our checker caught unsafe constructs in the gcc 3.3.2 com-
pilation of our transformed C code to x86 assembly. In certain expres-
sion contexts, gcc compiles the logical negation (!) operator into an as-
sembly sequence involving a conditional branch. Further experimentation
reveals that this idiom is not limited to the x86; the Sun C compiler
on an UltraSPARC-60 machine exhibits similar behavior. We discovered,
however, that the Intel C compiler does not compile ! using conditional
jumps, so we used the Intel compiler for our performance experiments.
One alternative would be to change the transform to avoid the ! oper-
ator, but we did not find a portable and efficient replacement. Another
alternative would be to modify gcc to add an extra mode that respects
the PC-security of compiled code; we found it easier, however, to sim-
ply use the Intel compiler for our tests. Our experience shows the merely
turning off optimizations does not guarantee that transformed C code will

be PC-secure after compilation. Details of our checker’s construction and
operation may be found in the full version of the paper [26].

6 Related Work

Many previous side channel defenses are application-specific. For exam-
ple, blinding can be used to prevent timing attacks against RSA [17,
9]. The major advantage of an application-specific defense is that it can
be efficient. Experimental measurements show that blinding only adds a
2–10% overhead; contrast this with the overhead we measured in § 5.1.

Unfortunately, no proof of security for blinding against side channel
attacks is known. In the absence of proof, it is difficult to assess whether
the defense works. For example, defenses were designed for the five AES
finalists [21]. These defenses had no formal model of information leaked
to the adversary and hence no way to verify security. In fact, Coron
and Goubin later pointed out a subtle flaw in one of the techniques [11].
Blömer, et al., give several more examples of techniques that were thought
to be secure but failed, and of cases where innocent-looking “simplifica-
tions” failed. These examples motivate their study of provably secure de-
fenses against side channels [8]. We note that Hevia and Kiwi showed that
conditional branches in some implementations of DES leak information
about the secret key; this is another motivation for PC-security.

Chevallier-Mames, Ciet, and Joye show a clever construction for per-
forming modular exponentiation without incurring undue overhead. They
show that, under an appropriate physical assumption, only the Hamming
weight of the exponent is leaked by their algorithm. Blömer, et al., also
define a model for provable security against side channel attacks and show
how to implement AES securely in this model [8]. While these methods
are a step forward, they still require a great deal of new effort for each
new application.

The programming languages community has studied the problem of
secure information flow extensively, but most work regarding C code has
focused on detecting covert channels and side channels [29], not on elimi-
nating them via code transformation. One exception is Agat’s work, which
transforms out timing leaks by inserting dummy instructions to balance
out the branches in a program’s control-flow graph [1, 2]. His work is fo-
cuses primarily on timing attacks, while our approach is more general.
There are also languages such as Jif and Flowcaml that include informa-
tion flow support as part of the language [33, 31].

Micali and Reyzin examine “physically observable cryptography” through
a framework that is closely related to ours. Their model specifies a “leak-
age function” (analogous to our notion of transcript) and allows the ad-
versary to measure the outputs of this leakage function on a “physical
machine” which may be executing some number of “virtual Turing Ma-
chines.” Our model, in contrast, is simpler since we consider only a single
program executing at a time. Also, Micali and Reyzin focus more on how
side channel attacks affect basic theorems of cryptography, while we are
interested in automatic transforms that improve security against such
attacks [24].

The above defenses focus on software; there are also promising solu-
tions that focus on hardware [30, 3, 4, 28]. To coordinate these defenses, we
need a contract between hardware researchers and software researchers as
to who will protect what. Our transcript is exactly this: a contract spec-
ifying what information the software can expect the hardware to leak to
the adversary.

7 Conclusion and Open Problems

We presented a program counter model for reasoning about side channel
attacks, a system that transforms code to increase resistance against at-
tacks, and a static verifier that checks the code output by our compiler is
PC-secure. This framework allows us to prove transformed code is secure
against an interesting class of side channels. With enough work, an even
more efficient automatic transformation for PC-security may be possible.

Looking forward, it is an interesting open problem to extend these
methods to handle a larger class of side-channel attacks. We have ar-
gued that specifying a transcript model as part of the hardware/software
interface simplifies development of both hardware and software counter-
measures. We leave it as an open problem to find the “right” contract
between these two worlds.

8 Acknowledgments

We thank Nikita Borisov, Eric Brewer, Karl Chen, Evan Chang, Adam
Chlipala, Rob Johnson, Chris Karlof, Naveen Sastry, Rusty Sears, Umesh
Shankar, and Fran Woodland for discussions and advice. David Molnar
was supported by an Intel OCR Fellowship and a National Science Foun-
dation Graduate Fellowship. This work supported by NSF ANI-0113941
and NSF CCR-0325311.

References

1. Johan Agat. Transforming Out Timing Leaks. In Proceedings on the 27th ACM

Symposium on the Principles of Programming Languages, 2000.
2. Johan Agat. Type Based Techniques for Covert Channel Elimination and Register

Allocation. PhD thesis, Chalmers University of Technology, 2001.
3. Luca Benini, Alberto Macii, Enrico Macii, Elvira Omerbegovic, Massimo Poncino,

and Fabrizio Pro. A Novel Architecture for Power Maskable Arithmetic Units. In
Proceedings of the 13th ACM Great Lakes symposium on VLSI, 2003.

4. Luca Benini, Alberto Macii, Enrico Macii, Elvira Omerbegovic, Massimo Poncino,
and Fabrizio Pro. Energy-aware Design Techniques for Differential Power Analysis
Protection. In Proceedings of the 40th conference on Design automation, 2003.

5. D.J. Bernstein. Cache-timing attacks on AES, 2005. http://cr.yp.to/papers.

html#cachetiming.
6. John Black and Hector Urtubia. Side-Channel Attacks on Symmetric Encryp-

tion Schemes: The Case for Authenticated Encryption. In Proceedings of the 11th

USENIX Security Symposium, 2002.
7. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on RSA

encryption standard PKCS #1. In CRYPTO, 1998.
8. Johannes Blömer, Jorge Guajardo Merchan, and Volker Krummel. Provably secure

masking of AES. In SAC, 2004.
9. Dan Boneh and David Brumley. Remote Timing Attacks Are Practical. In Pro-

ceedings of the 12th USENIX Security Symposium, 2003.
10. Suresh Chari, Charanjit Jutla, Josyula R. Rao, and Pankaj Rohatgi. A Cautionary

Note Regarding Evaluation of AES Candidates on Smart-Cards. In Proceedings of

the Second AES Candidate Conference, 1999.
11. Jean-Sébastien Coron and Louis Goubin. On Boolean and Arithmetic Masking

Against Differential Power Analysis. In Proceedings of the Workshop on Crypto-

graphic Hardware and Embedded Systems, 2000.
12. H. Handschuh and H. Heys. A timing attack on RC5. In Lecture Notes in Computer

Science: Selected Areas in Cryptography, pages 306–318. Springer-Verlag, 1999.
13. Matthew Hennessy. The Semantics of Programming Languages: an Elementary

Introduction using Structural Operational Semantics. John Wiley and Sons, New
York, N.Y., 1990.

14. John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side Channel Crypt-
analysis of Product Ciphers. Journal of Computer Security, 8:141–158, 2000.

15. Vlastimil Klima, Ondrej Pokorny, and Tomas Rosa. Attacking RSA-based sessions
in SSL/TLS. In CHES, 2003.

16. Vlastimil Klima and Tomas Rosa. Side channel attacks on CBC encrypted mes-
sages in the PKCS #7 format. Cryptology ePrint Archive, Report 2003/098, 2003.
http://eprint.iacr.org/.

17. Paul Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Proceedings of the 16th Annual International Cryptology

Conference, 1996.
18. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In

Proceedings of the 19th Annual International Cryptology Conference, 1999.
19. Butler W. Lampson. A Note on the Confinement Problem. Communications of

the ACM, 16(10):613–615, 1973.
20. J. Manger. A chosen ciphertext attack on RSA optimal asymmetric encryption

padding (OAEP) as standardized in PKCS #1 v2.0. In CRYPTO, 2001.

21. Thomas S. Messerges. Securing the AES Finalists Against Power Analysis Attacks.
In Proceedings of the Fast Software Encryption Workshop, 2000.

22. Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Investigations of
Power Analysis Attacks on Smartcards. In Proceedings of the USENIX Workshop

on Smartcard Technology, 1999.
23. Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Power Analysis

Attacks of Modular Exponentiation in Smartcards. In Proceedings of the Workshop

on Cryptographic Hardware and Embedded Systems, 1999.
24. Silvio Micali and Leo Reyzin. Physically observable cryptography. In Theory of

Cryptography, 2004.
25. Bodo Möller. Security of CBC ciphersuites in SSL/TLS: Problems and counter-

measures, May 2004. http://www.openssl.org/~bodo/tls-cbc.txt.
26. David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program

counter security model: Automatic detection and removal of control-flow side chan-
nel attacks (Full Version), 2005. IACR eprint archive report 2005/368.

27. George Necula, Scott McPeak, S.P. Rahul, and Westley Weimer. CIL: Interme-
diate Language and Tools for Analysis and Transformation of C Programs. In
Proceedings of the Conference on Compilier Construction, 2002.

28. Patrick Rakers, Larry Connell, Tim Collins, and Dan Russell. Secure Contactless
Smartcard ASIC with DPA Protection. In Proceedings of the Custom Integrated

Circuits Conference, 2000.
29. Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-Flow Secu-

rity. IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.
30. Adi Shamir. Protecting Smart Cards from Passive Power Analysis with Detached

Power Supplies. In Proceedings of the Workshop on Cryptographic Hardware and

Embedded Systems, 2000.
31. Vincent Simonet. Flowcaml, 2005. http://cristal.inria.fr/~simonet/soft/

flowcaml/.
32. S. Vaudenay. Security flaws induced by CBC padding - applications to SSL, IPSEC,

WTLS... In EUROCRYPT, 2002.
33. Lantian Zheng and Andrew Myers. End-to-end availability policies and noninter-

ference, 2005. Computer Security Foundations Workshop.

A Specifying the Transform

We are now ready to specify the transform more precisely. As we dis-
cussed, our implementation handles all of the C language. However, the
lack of a formal semantics for C makes it difficult to prove anything about
C, so we focus on a subset of C that contains most of the language fea-
tures that are relevant to our analysis. For this subset, we can prove that
the transform is semantically preserving and that it produces PC-secure
code.

To precisely capture this subset of C, we introduce IncredibL, a simple
imperative language with restricted control flow. IncredibL is our own
invention, but it is derived from Hennessy’s WhileL [13]. The grammar
for IncredibL can be found in Fig. 3.

Roughly, IncredibL captures a memory-safe subset of C with only
bounded loops, if statements, and straight-line assignments. Note that
we do not allow any forms of recursion or unstructured control flow,
as these may introduce unbounded iteration. We also disallow calls to
untransformed subroutines, including I/O primitives. Note that because
loop bounds are known statically in IncredibL, we can in principle unroll
all loops in any IncredibL program to obtain code with no branches.

Our transformation TProgram is specified in Fig. 4. We state the main
theorems here. Proofs can be found in full version [26].

Theorem 3. TProgram is semantics-preserving: for every IncredibL pro-
gram P , TProgram[[P]] consists only of straight-line code and loops with
straight-line code bodies that run for a fixed constant number of iterations
with no assignments to induction variables.

Corollary 1. TProgram enforces PC-security: for every IncredibL program
P , TProgram[[P]] is PC-secure.

C ∈ Com = Program
E ∈ Exp
B ∈ BoolExp ⊂ Exp
I ∈ Identifier

arithop ∈ AOp = {+, -, *, &, |}
relop ∈ RelOp = {>, <, =}

boolop ∈ BoolOp = {and, or}
n ∈ Num

(a) Syntactic domains.

C ::=
I := E | C′; C′′ | if B then C′ else C′′

| for I := n to n′ do C′ | break

E ::= I | n | B | E′ arithop E′′ | ~E′

B ::=
0 | 1 | B′ boolop B′′ | E′ relop E′′ | !B′

(b) Grammar.

Fig. 3. The abstract syntax of IncredibL.

TProgram[[C]] = I0 := -1; TCom[[C]](I0, I0) where I0 is a fresh identifier

TCom[[I := E]](Iif, Ibrk) = conditional-assign(I, (Iif & Ibrk), E, I)

TCom[[C; C′]](Iif, Ibrk) = TCom[[C]](Iif, Ibrk); TCom[[C′]](Iif, Ibrk)

TCom[[if B then C else C′]](Iif, Ibrk) = conditional-assign(I0, (Iif & Ibrk), (0-B), 0); TCom[[C]](I0, Ibrk);
conditional-assign(I0, (Iif & Ibrk), ~I0, 0); TCom[[C′]](I0, Ibrk)

where I0 is a fresh identifier

TCom[[for I := n to n′ do C]](Iif, Ibrk) = conditional-assign(I0, (Iif & Ibrk), -1, 0);
for I := n to n′ do TCom[[C]](Iif, I0)

where I0 is a fresh identifier

TCom[[break]](Iif, Ibrk) = conditional-assign(Ibrk, (Iif & Ibrk), 0, Ibrk)

conditional-assign(I, Em, Et, Ef) = I := (Et & Em) | (Ef & ~Em)

Fig. 4. A formal specification of our transform.

